
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tejr20

European Journal of Remote Sensing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tejr20

A review of seagrass detection, mapping and
monitoring applications using acoustic systems

Mustafa Umit Gumusay, Tolga Bakirman, Inci Tuney Kizilkaya & Nedim Onur
Aykut

To cite this article: Mustafa Umit Gumusay, Tolga Bakirman, Inci Tuney Kizilkaya & Nedim Onur
Aykut (2019) A review of seagrass detection, mapping and monitoring applications using acoustic
systems, European Journal of Remote Sensing, 52:1, 1-29, DOI: 10.1080/22797254.2018.1544838

To link to this article:  https://doi.org/10.1080/22797254.2018.1544838

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 17 Nov 2018.

Submit your article to this journal 

Article views: 7346

View related articles 

View Crossmark data

Citing articles: 16 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tejr20
https://www.tandfonline.com/loi/tejr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/22797254.2018.1544838
https://doi.org/10.1080/22797254.2018.1544838
https://www.tandfonline.com/action/authorSubmission?journalCode=tejr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tejr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/22797254.2018.1544838
https://www.tandfonline.com/doi/mlt/10.1080/22797254.2018.1544838
http://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2018.1544838&domain=pdf&date_stamp=2018-11-17
http://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2018.1544838&domain=pdf&date_stamp=2018-11-17
https://www.tandfonline.com/doi/citedby/10.1080/22797254.2018.1544838#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/22797254.2018.1544838#tabModule


A review of seagrass detection, mapping and monitoring applications using
acoustic systems
Mustafa Umit Gumusaya, Tolga Bakirman a, Inci Tuney Kizilkayab and Nedim Onur Aykuta

aGeomatic Engineering, Yildiz Technical University, Istanbul, Turkey; bBiology, Ege University, Izmir, Turkey

ABSTRACT
Seagrass meadows are key elements of marine ecosystems as they affect the physical,
chemical and biological environment and provide habitats for fish and invertebrates.
Human activities have caused a deterioration in seagrass which has led to unstable benthic
habitats; therefore, to prevent major decline, seagrass distribution must be mapped and
monitored. Acoustic systems allow researchers, scientists and decision makers to collect high-
resolution datasets such as bathymetry, backscatter and sub-bottom profiles. These systems
are able to characterise the properties of the seafloor including plants, sediments and
habitats. In this review, we examine seagrass mapping, monitoring and detection applications
using acoustic systems in the literature. Although there are various methodologies for data
collection, processing, classification and validation, these are limited to certain seagrass
species or study areas. Further worldwide research is required to achieve consistent seagrass
detection systems with data acquisition, pre-processing, classification and post-processing.
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Introduction

Seagrass ecosystems provide ecologically essential
functions which influence the physical, chemical
and biological environment in coastal waters by pro-
ducing and exporting organic carbon, regulating car-
bon dioxide, nutrient cycling, sediment stabilisation,
preventing coastal erosion and reducing exposure to
the bacterial pathogens of humans, fish and inverte-
brates (Lamb et al., 2017; Orth et al., 2006). As
seagrasses grow, they rise into the reefs, trap sedi-
ment, mediate the movement of the waves, clarify the
water and protect the beaches from erosion. Thus, the
role of seagrass meadows in coastal marine environ-
ments is often compared to that of a forest
(Boudouresque et al., 2012). These species are large
and live for a long time, but they grow slowly
(1–6 cm per year) and take a long time to regenerate
once harmed (Pergent et al., 2016).

Seagrass and other benthos in the sea ecosystem
are under human pressure (Brown, Smith, Lawton, &
Anderson, 2011). Fishing, mining, pollution and
other human activities damage the seabed ecosystem
and reduce the benthic biodiversity. If no precautions
are taken, fish and sea products are estimated to
dramatically reduce by the middle of the 21st century
(Worm et al., 2006), and all the world’s oceans are
said to be affected (Halpern et al., 2008). According
to the studies, only 5–10% of the world’s seafloor is
mapped (Wright & Heyman, 2008). Therefore, it is

impossible to manage resources effectively and pro-
tect ecologically substantial areas. Marine ecosystems
must be mapped to determine marine protected areas
(MPAs) and manage resources. Due to the limitations
of classic surveying techniques, information about
benthic habitat’s ecologic function and geographic
diversity is scarce (Wright & Heyman, 2008).
Geological and biological research into the seafloor
was carried out in the early part of the 19th century
by collecting samples from the bottom of the sea
(Eleftheriou, 2013); however, sampling techniques
such as grab and trawl cannot characterise biological
patterns and processes (Van Rein, Brown, Quinn, &
Breen, 2009). These techniques provide detailed
information about small areas. However, it is impos-
sible to present biological characteristics of the sea-
floor on a large scale (Brown et al., 2011).

Benthic mapping and bathymetry derivation
(Dekker Arnold et al., 2011; Lyons, Phinn, &
Roelfsema, 2011), seagrass biomass and productivity
(Hill, Zimmerman, Bissett, Dierssen, & Kohler,
2014), estuarine and coastal water quality estimation
(Brando & Dekker, 2003), other coastal features and
processes extraction (Klemas, 2012) studies utilising
LiDAR, optical and hyperspectral satellite and air-
borne remote sensing technologies are widely avail-
able in the literature. As relatively easy to implement
acoustic technologies have rapidly developed and
became widespread, it is now possible to quickly
derive accurate and high-quality backscatter and
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bathymetry information that cannot be derived from
optical sensors and to map the physical aspects of
marine and coastal areas (Brown & Blondel, 2009;
Wright & Heyman, 2008). It is now possible to
obtain geomorphological and habitat information
for sea bottom-related studies in extensive areas
using broad-acoustic beam systems, such as side
scan sonar (SSS), ground discriminating single-
beam echo-sounders (e.g. RoxAnn, QTC-View,
Submerged Aquatic Vegetation Early Warning
System [SAVEWS]), multiple narrow-beam swath
bathymetry systems, multibeam echosounder
(MBES), recreational-grade fish finder SSS, forward-
looking sonar (e.g. DIDSON ARIS, EchoPilot FLS,
Simrad ForwardScan) and Multispectral MBES
(Godet, Fournier, Toupoint, & Olivier, 2009;
Wright & Heyman, 2008). By combining these tech-
niques with conventional or remotely operated
underwater vehicles (ROV) in situ to characterise
the geological and biological seafloor characteristics,
it is possible to produce thematic seafloor maps for
management applications and defining MPAs. High-
resolution seafloor mapping has recently become
more prevalent as these tools become more afford-
able, more widely available and are integrated with

Geographic Information System (GIS) (Brown et al.,
2011; Mayer, 2006).

In this paper, we review the literature on sea-
grass mapping, detection and monitoring applica-
tions using mainly acoustic systems. There are also
studies that benefit from optical and airborne sys-
tems in the same manner reviewed by Hossain,
Bujang, Zakaria, and Hashim (2015). Therefore,
studies using these systems are not covered in this
paper.

Principal acoustic technologies for seagrass
mapping applications

Seagrasses belong to four families known as
Posidoniaceae (9 species), Zosteraceae (24 species),
Hydrocharitaceae (25 species) and Cymodoceaceae
(18 species), that is, a total of 76 species. The status
and trends for these species according to The
International Union for Conversation of Nature
(IUCN) Red List of Threatened Species (www.iucnred
list.org) are shown in Table 1. The IUCN provides
nine types of status description on its red list of
species. In Table 1, the species have been given with
their status and trends.

Table 1. Status and trends of seagrasses according to the IUCN red list of threatened species.
Family Genera Species Status Trend Family Genera Species Status Trend

Posidoniaceae Posidonia Angustifolia LC STA Hydrocharitaceae Enhalus acoroides LC DCR
Australis NT DCR Thalassia hemprichii LC STA
Coriacea LC STA testudinum LC STA
Denhartogii LC STA Halophila australis LC STA
Kirkmanii LC STA baillonis VU DCR
Oceanica LC DCR beccarii VU DCR
Ostenfeldii LC N/A capricorni LC N/A
Robertsoniae N/A N/A decipiens LC STA
Sinuosa VU DCR engelmannii NT DCR

Zosteraceae Phyllospadix Iwatensis VU DCR euphlebia DD N/A
Japonicus EN DCR gaudichaudii N/A N/A
Juzepczukii N/A N/A hawaiiana VU DCR
Scouleri LC STA japonica N/A N/A
Serrulatus LC STA johnsonii LC INCR
Torreyi LC STA major N/A N/A

Zostera Angustifolia N/A N/A mikii N/A N/A
Asiatica NT DCR minor LC N/A
Caespitosa VU DCR nipponica NT DCR
Capensis VU DCR okinawensis N/A N/A
Capricorni N/A N/A ovalis LC STA
Caulescens NT DCR ovata LC STA
Chilensis EN DCR spinulosa LC STA
Geojeensis EN DCR stipulacea LC STA
Japonica LC INCR sulawesii DD N/A
Marina LC DCR tricostata LC N/A
Mucronata N/A N/A Cymodoceaceae Amphibolis antarctica LC STA
Muelleri LC STA griffithii LC STA
Nigricaulis LC DCR Cymodocea angustata LC N/A
Noltii LC DCR nodosa LC STA
Novazelandica N/A N/A rotundata LC STA
Pacifica LC N/A serrulata LC STA
Polychlamys LC STA Halodule beaudettei DD N/A
Tasmanica LC STA bermudensis DD DCR

Cymodoceaceae Syringodium Filiforme LC STA ciliata DD N/A
Isoetifolium LC STA emarginata DD N/A

Thalassodendron Ciliatum LC N/A pinifolia LC DCR
Leptocaule N/A N/A uninervis LC STA
Pachyrhizum LC N/A wrightii LC INCR

LC: least concern; NT: near threatened; VU: vulnerable; EN: endangered; DD: data deficient; DCR: decreasing; INCR: increasing; STA: stable; N/A:
information not available) (www.iucnredlist.org).
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As can be seen from Figures 1 and 2, seagrass
species are widely distributed along temperate and
tropical coastlines around the world (Short,
Carruthers, Dennison, & Waycott, 2007). Figure 1

shows the estimated distribution map of seagrass
along the North and South American coasts.
Figure 2 shows the estimated distribution map of
seagrass in Europe, Africa, Asia and Australia. Each

Figure 1. Seagrass species estimated distribution in North and South America. (Data Source: IUCN, Map created by T. Bakirman).

Figure 2. Seagrass species estimated distribution in Europe, Africa, Asia and Australia. (Data Source: IUCN, Map created by T. Bakirman).
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geographic distribution data is produced for each
species by IUCN based on former scientific studies.

There are many acoustic techniques for seagrass
mapping, detection and monitoring applications dis-
cussed in the literature. The study by Newton and
Stefanon (1975) seems one of the first studies that
benefits from acoustic technology for marine biology
application. In the study, it is aimed to show the effect
of fishery dredging and distribution of P. oceanica
using SSS. Maceina and Shireman (1980) used
a recording fathometer to determine the distribution
and biomass of hydrilla (Hydrilla verticillata) and
American eelgrass (Vallisneria americana). Hanley
(1982) and Stent and Hanley (1985)’s studies are the
first examples of assessing submerged aquatic plant
populations in lakes and reservoirs using SBES.
However, the observed plant Elodea canadensis
belongs to inland waters; it has not been classified as
a seagrass species. The SAVEWS, which is a compact
SBES system, developed by the United States (US)
Army Engineer Research and Development Centre.
This system was used to map low-density Halophila,
Cymodocea, Syringodium and Zostera in tropical US
waters (Lee Long, Roder, McKenzie, & Hundley,
1998). Between 1997 and 1998, seagrass mapping stu-
dies have been carried out with Sector Scan Imaging
Sonars (SSIS) (Bozzano, Mantovani, Siccardi, &
Castellano, 1998; Roberto Bozzano & Siccardi, 1997;
Siccardi, Bozzano, & Bono, 1997) and active hydroa-
coustic methods (Sabol, McCarthy, & Rocha, 1997).
The study by Komatsu et al. (2003) conducted in
Otsuchi Bay on the Sanriku coast of Japan is the first
example of using MBES to map seagrass (Zostera
caulescens) beds. In 2005, Descamp, Pergent, Ballesta,
& Foulquie utilised acoustics telemetry, which is a local
underwater positioning system based on an acoustical
interferometric scheme, to survey and map P. oceanica
beds in coastal areas of France. In 2007, Warren and
Peterson tried a different approach using an Acoustic
Doppler Current Profiler (ADCP) to measure vegeta-
tion and canopy height. Lo Iacono et al. (2008) focused
on imaging P. oceanica meadows by conducting
a high-resolution sub-bottom profiler survey along
with aerial photogrammetry in the Mediterranean
Sea. In 2014, the US Army Engineer Research and
Development Centre upgraded SAVEWS with
SAVEWS Jr. under the Aquatic Plant Control
Research Programme. SAVEWS Jr. uses two frequen-
cies (200 and 800 kHz) to determine the bottom depth
and presence/absence of submerged aquatic vegetation
(SAV; B. Sabol et al., 2014). In recent years, recrea-
tional grade side sonar has become popular for sub-
strate mapping studies in rivers (Buscombe, 2017;
Hamill, Buscombe, & Wheaton, 2018). This low-cost
technology has also been applied for measuring sea-
grass cover in shallow environments by Greene,
Rahman, Kline, and Rahman (2018).

Even though various methods have been applied in
seagrass studies, as the acoustic and sonar technologies
have developed it is observed that MBES, SSS and
SBES systems are the most common in recent scien-
tific studies. The main technological advances can be
summarised as the transition from analogue to digital
data acquisition, the ability to record bathymetry along
with backscatter with SSS using interferometry and
narrower beam angles for MBES systems. Water col-
umn data is another innovation to detect objects
between the seafloor and sea surface. Recently, multi-
spectral acoustic backscatter, which allows observation
of seafloor in multiple frequencies, has been devel-
oped. These survey grade systems are easy to imple-
ment in any study area. However, they have high
marketing prices. Therefore, low-cost systems such as
forward-looking sonar (FLS), fish finder sonar and
recreational grade SSS have also become widespread.

Discussion

In this paper, we review 91 seagrass related studies
which comprise 58 journal articles, 20 conference pro-
ceedings, 7 technical notes, 2 books, 3 Ph.D. and 1 MSc.
thesis, as listed in Table 2. As it can be seen in Figure 3
which is derived from Table 2, the studies focused on
seagrass became highly popular in recent years.

Acoustic instruments

As mentioned in the previous section, various acous-
tic methods have been used in seagrass related stu-
dies. Until 2003, it can be observed that SSS, SBES
and other acoustic systems were the most commonly
used methods. From 2003, using MBES increased as
narrower beam angles for these systems have been
exploited which allows production of high-resolution
integrated bathymetry and backscatter. A total of 34
studies utilised SSS while SBES has been used in 29
studies and MBES in 24. Sixteen studies examined the
capabilities of other systems such as sector scan ima-
ging sonar, acoustic telemetry, or passive acoustics.
Note that the total number exceeds 91 since some
studies dealt with more than one acoustic system
data.

Although standard SSS systems produce visually
good backscatter, they cannot collect information
about depth. From this view point, four studies exam-
ined the possibility of seagrass mapping using
a combination of SSS backscatter and SBES depth infor-
mation (Legrand et al., 2010; McCarthy & Sabol, 2000;
Rahnemoonfar & Rahman, 2016; Rahnemoonfar, Yari,
Rahman, & Kline, 2017) and five studies dealt with
integration of MBES and SSS (Kendrick et al., 2005;
Renato et al., 2016; Shono, Komatsu, Sato,
Koshinuma, & Tada, 2004; van Rein, Brown, Quinn,
Breen, & Schoeman, 2011).
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Some studies compared the performance of differ-
ent acoustic methods (B. Sabol, Graves, & Preston,
2007; van Rein et al., 2011), examined manual versus
acoustic methods (Chamberlain, Doering, Orlando, &
Sabol, 2009) and analysed different MBES backscatter
outputs (Innangi et al., 2015). Although acoustic
methods provide high-resolution seafloor data, opti-
cal satellite images can also be utilised to extract
information for wide coverage in shallow areas
depending on the water turbidity. Karpouzli and
Malthus (2007) focused on integrating SSS with
IKONOS while other scientists compared the perfor-
mance of SBES with IKONOS (B. M. Riegl & Purkis,
2005), WordView-2 (Reshitnyk, Costa, Robinson, &
Dearden, 2014) and Quickbird (J. Barrell, Grant,
Hanson, & Mahoney, 2015). Aerial photogrammetry
is also one of the valid information sources which can
be integrated with acoustic data (Legrand et al., 2010;
Lo Iacono et al., 2008; Maceina & Shireman, 1980;
Mulhearn, 2001; Pasqualini, Pergent-Martini,
Clabaut, & Pergent, 1998).

SBES is the most affordable system among survey
grade echo sounder solutions. However, gaps can be
occurred between survey lines due to working prin-
ciple geometry of the system. Therefore, it is not
feasible to cover huge survey areas. But, these systems
are still useful for shallow areas around a couple of
meters with dense seagrass. On the other hand, SSS
systems provide high-resolution backscatter with
wide swath coverage. However, these systems do not
acquire co-registered bathymetry. Even though some
SSS systems can provide co-acquired bathymetry
using interferometry, the measurement principle has
limitations (Lurton, 2002). Therefore, SSS bathymetry
products are not as accurate as MBES bathymetry.
Since SSS systems are used as towfish, position infor-
mation which is essential for seagrass related studies
is computed roughly compared to SBES and MBES
systems. Recent technology allows MBES systems to
collect highly accurate bathymetry and backscatter by

integrating with auxiliary sensors such as gyro and
motion sensor. Based on swath angle of the transdu-
cer and water depth, they offer wide coverage along
survey lines which is generally around 3–4 times of
the current water depth. For the same reason, MBES
systems are not always the best choice in depths of
a couple of meters. One can also prefer to use an
SBES system in this scenario due to the high retail
prices of MBES systems in the market. Recently
recreational grade SSS systems have become wide-
spread due to the same reason. They cost approxi-
mately 10% of survey grade SSS. They are extensively
utilised by scientists for substrate mapping (Daniel
Buscombe, 2017; Buscombe, Grams Paul, & Smith
Sean, 2016; Hamill et al., 2018; Hamill, Wheaton,
Buscombe, Grams, & Melis, 2017) and benthic habi-
tat mapping (Daniel Buscombe, 2017; Cheek
Brandon, Grabowski Timothy, Bean Preston,
Groeschel Jillian, & Magnelia Stephan, 2016; Kaeser
& Litts, 2010; Kaeser Adam, Litts Thomas, & Tracy,
2013) in river environments. However, this technol-
ogy has not been widely exploited for seagrass map-
ping or detection studies except by Greene et al.
(2018) and Kingon, Thijs, Robinson, Maharaj, &
Garcia (2018). Greene et al. (2018) have constructed
a SSS to measure seagrass cover within the Lower
Laguna Madre in Texas, USA. Kingon et al. (2018)
developed a seagrass mapping system on a budget
consisting of a kayak, Lowrance HDS, ReefMaster
and Google Earth software. Based on the results of
these studies, recreational grade SSS systems are effi-
cient hardware which provides satisfactory data for
seagrass-related studies.

FLS systems are generally used recreational activ-
ities for safe navigation. They are also utilised for
object detection (Galceran, Djapic, Carreras, &
Williams, 2012; Hurtós, Palomeras, Carrera, &
Carreras, 2017), object segmentation (Banerjee, Ray,
Shome, & Sanyal, 2014) and target recognition
(Ferreira, Djapic, Micheli, & Caccia, 2014) studies.

Figure 3. Study counts according to years.
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However, we have encountered no seagrass-related
studies benefits from FLS. On the other hand,
a survey grade forward-looking multibeam sonar
has been developed within the European MAST III
program (COSMOS Project) (Cervenka, 1998). The
developed forward-looking multibeam sonar has
been applied for seafloor segmentation using angular
backscatter responses (Haniotis, Cervenka, Negreira,
& Marchal, 2015).

There are also other acoustic methods used by
scientist for seagrass applications such as acoustic
telemetry (Descamp, Pergent, Ballesta, & Foulquie,
2005), ADCP (Warren & Peterson, 2007), sub-
bottom profiler (Lo Iacono et al., 2008), sediment
imaging sonar (Lefebvre, Thompson, Collins, &
Amos, 2009) and passive acoustics (Felisberto,
Rodríguez, Santos, Zabel, & Jesus, 2016).

Frequency

Backscatter data depends on the frequency of the
echo transmitted into seafloor by the transducer.
The frequency of the transducer directly affects the
received dB levels in the backscatter dataset. While
some systems offer multiple frequency options for the
survey, certain systems only work for a constant
frequency.

MBES frequency used in the seagrass applications
varies from 100 to 455 kHz. The most used MBES
systems are the Teledyne RESON SeaBat series, fol-
lowed by Kongsberg and R2Sonic. For SBES systems,
the frequencies are between 38 and 430 kHz. The
most frequently used SBES systems are BioSonics,
SIMRAD, QTC and Odom. Some systems also offer
split beam options such as the BioSonics DT-X series.
SSS systems have a wider frequency range for seagrass
mapping applications starting from 100 up to
800 kHz. The most commonly used SSS systems can
be summarised as EdgeTech, Klein, EG&G, Imagine
and SIMRAD. We have analysed two seagrass-related
studies using recreational-grade sonar systems. They
both use Lowrance StructureScan HD transducers but
with different frequencies as 455 and 800 kHz.

Within the scope of European MAST III program,
a forward-looking MBES called COSMOS which
transmits signals at 100 kHz has been developed.
Haniotis et al. (2015)’s study results show the devel-
oped system can also be utilised for seagrass-related
applications.

Existing multi-frequency MBES R2Sonic 2026 col-
lects data with 100, 200 and 400 kHz simultaneously.
According to Costa (2018), 100 kHz is the most
discriminative frequency, and multispectral backscat-
ter may be an effective tool for applications focused
soft bottoms. Gaida, Tengku Ali, Snellen, and Simons
(2018)’s study shows that the combination of 200 and
400 kHz yields the highest number of acoustic classes

while the combination of 100 and 400 kHz provides
the highest discrimination performance. There is cur-
rently no study in literature focusing on seagrass
mapping using multispectral backscatter.

Although there are studies investigating the rela-
tionship between used frequency and seagrass in
laboratory environment such as Wilson and Dunton
(2009), there is no study that applies laboratory
results to a real application or investigating this rela-
tionship in the field.

Data

Bathymetry and backscatter are the most common
acoustic datasets used in seagrass applications.
According to a survey conducted by Lucieer et al.
(2017), almost 30% of scientists are interested in
seagrass applications featuring backscatter data.
Most of the seagrass applications take advantage of
backscatter data (57 studies) while some use it solely
(33 studies). It is also integrated with bathymetry (31
studies), canopy height (2 studies) and fish finder (1
study). Even though applications can be found in the
literature based only on bathymetry data (7 studies),
backscatter data is mostly used with bathymetry
(Lurton & Lamarche, 2015).

One can observe that backscatter is an essential
data set for seagrass applications. Recent technology
allows MBES systems to acquire better resolution
backscatter images by mimicking SSS geometry such
as R2Sonic TruePix data which makes it an ideal tool
for seagrass applications. In most of the studies,
researchers do not give too many details about back-
scatter pre-processing, and its effects are not investi-
gated deeply. This is a key factor since processes such
as time varied gain (TVG) or beam pattern correc-
tions have a huge effect on obtained decibel (dB)
levels. There are also some corrections applied by
sonar systems. Parnum (2007) investigates beam pat-
tern, saturation and pulse duration MBES system
effects on backscatter data. In more recent studies,
Lamarche and Lurton (2018) and Schimel et al.
(2018) exhaustively analyses MBES backscatter data
processing and its effects on data.

Most multibeam systems are monochromatic which
operates around a single frequency (Hughes Clarke,
2015). Researchers have investigated various methods
to obtain multispectral backscatter for a better seafloor
characterization (Brown, Beaudoin, Brissette, &
Gazzola, 2017). Hughes Clarke (2015) achieved this
aim by mounting a pair of MBES system in the same
vessel for data acquisition. Brown et al. (2010) used
multiple survey platforms simultaneously during data
acquisition for their study. More recently, multispectral
acoustic backscatter which allows collecting data using
different frequencies simultaneously has been devel-
oped. Multispectral data gives more information and
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a better insight into the seafloor as each frequency
provides distinct outputs and a false colour composite
image of backscatter can be created (Brown et al., 2017).
R2Sonic launched a multispectral challenge at GeoHab
2017 conference providing a sample data collected via
R2Sonic 2026. The researchers have been asked to pre-
sent their work which focuses on using multispectral
backscatter in bottom characterization at GeoHab 2018
conference. In this context, the use of multispectral
backscatter was investigated for benthic habitat map-
ping (Costa, 2018), seabed sediment classification
(Gaida et al., 2018), seafloor characterization (Daniel
Buscombe, Grams, & Kaplinski, 2018). These studies
show that using multiple frequencies provides
improved discrimination of the seafloor that can be
also applied to seagrass-related studies. Multiple fre-
quencies also allow creating false colour RGB composite
images. This may lead to the formation of a vegetation
index using band combinations such as Normalized
Difference Vegetation Index (NDVI) used in terrestrial
studies.

Water column is another output data for echo soun-
ders which collects continuous information from the
sea surface to seafloor. A detailed review about water
columnMBES data applications can be found in Colbo,
Ross, Brown, and Weber (2014). They investigated
water column MBES data applications in two topics:
biological applications, geophysical and oceanographic
applications. Biological applications are summarised as
fisheries, marine mammals, zooplankton, kelp ecosys-
tems, aquaculture while geophysical and oceanographic
applications are mentioned as gas venting, near-surface
bubbles, suspended sediment, physical oceanography
and wrecks/archaeological oceanography. Although
there does not seem any seagrass-related study using
water column data, McGonigle, Grabowski, Brown,
Weber, and Quinn (2011)’s method can be applied to
seagrass mapping studies. The study investigates to
identify kelp canopies by benefitting fromwater column
returns of MBES system. One reason for the absence of
seagrass studies with water column data can be
described as the requirement of huge disk spaces
which makes it challenging to collect, process and ana-
lyse the data (Gee, Doucet, Parker, Weber, & Beaudoin,

2012). There is currently a working group that aims to
develop processing workflows and methodologies for
water column data (Lamarche, Le Gonidec, Greinert,
Lucieer, & Lurton, 2017).

Positioning

The positioning is a vital component for seagrass
mapping as it is for any regular mapping applica-
tion. However, the position data in seafloor mapping
is not as precise as land or navigation applications.
Based on the reviewed literature, anything below
1 m to decimeter precision is sufficient for seagrass
applications. While most of the studies took advan-
tage of differential GPS (DGPS), two studies used
real-time kinematic (RTK) GPS (Pribičević, Đapo,
Kordić, & Pijanović, 2016; Stevens, Lacy, Finlayson,
& Gelfenbaum, 2008).

Even though DGPS can provide enough horizontal
accuracy, one can also take advantage of GPS tide to
improve the vertical accuracy of products using RTK
GPS systems. If the study area has dynamic tide
changes during the day and nearest tide station is
a few kilometres away, resulting data would not be
sufficient without GPS tide information.

Seagrass species

There are 76 known species of seagrasses, so species
information is as crucial as the final research pro-
ducts in resource management and determining the
MPAs.

In 48 studies, the researchers worked on a single
species while 19 focused on multiple species. In 23
articles, the authors did not specify significant sea-
grass species. The most focused seagrass species are
P. oceanica and Z. marina with 33 and 20 studies,
respectively (Table 3).

P. oceanica studies are numerous as expected due to
it being an essential endemic plant for Mediterranean
marine ecosystem. This plant is already near threatened
in the Western Mediterranean basin and more infor-
mation on species distribution, and threats impact in
the Eastern and Southern Mediterranean basin is

Table 3. Study count for seagrass species.

Species Count Species Count Species Count

P. oceanica 33 P. sinuosa 2 E. canadensis 1

Z. marina 20 S. filiforme 2 H. ovalis 1
C. nodosa 5 T. testudinum 2 H. pinifolia 1

H. australis 4 V. americana 2 H. wtinervis 1
P. australis 4 Z. asiatica 2 P. angustifolia 1

Z. caulescens 4 Z. capricorni 2 P. ostenfeldii 1
A. antarctica 2 Z. noltii 2 S. isoetifolium 1

H. decipiensis 2 A. griffithii 1 Syringodrum 1
H. verticillata 2 Amphibolis sp. 1 Thallasodendron sp. 1
H. wrightii 2 C. serrulara 1 Z. tasmanica 1
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needed. Therefore, P. oceanica has been taken under
protection by EU legislation, the Bern and Barcelona
Conventions and national legislation (EC Council
Regulation N° 1967/2006) (Regulation, 2006). There
are also national legal frameworks for the protection
of P. oceanica in Albania, Croatia, France, Italy,
Montenegro, Slovenia, Spain and Turkey.

Z. marina is also an essential species of seagrass
that is in decline. Even though there have been
restoration works in Europe and North America,
there is no known national or international legal
framework for protecting of this species.

Although seagrass species are distributed around
the world, not every species has been considered
and investigated deeply. The study distribution
map can be seen in Figure 4. Three studies did
not specify the study area, and two stated the
name of the sea only.

Most of the studies focused on a single area. Some
authors tried their approach in multiple areas in the
same country. Only two studies focused on multiple
areas in different countries (Lyons & Pouliquen,
1998; Paul, Lefebvre, Manca, & Amos, 2011).

In-situ data

Ground truth data is vital for classification of input
data, validation of the final product or assessing the
conditions of the study area.

While 63 studies met this requirement, 27 stu-
dies did not integrate or provide any in situ data in
their research. Of 63 studies, 46 used the single
ground truth collection method, and multiple
methods were applied in the rest of the researches.
The most preferred ground truth collection meth-
ods are underwater video and scuba diving which
was used in 38 and 22 studies, respectively
(Table 4).

It can be observed that former studies do not
include ground truth information because it was not
feasible to collect information via scuba diving and
grab samples for relatively large study areas.
Remotely Operated Vehicle (ROV) (Ferretti et al.,
2017) and Autonomous Underwater Vehicle (AUV)
(Ierodiaconou et al., 2018) technology have eased this
process considerably. In situ sampling techniques
have been extensively analysed by researchers for
seabed habitat mapping (Coggan et al., 2007) and
monitoring (Van Rein et al., 2009).

Data classification methods

Classification is a widely used tool for extracting
information from images and implemented in sea-
grass related studies. It is a rapidly developing
tool being employed in different marine applica-
tions for a long time. In this section, we discuss
which classification methods exist, how they have
evolved through the years and the future of auto-
mated classification techniques focusing mainly on
seagrass mapping, detection and monitoring
applications but also seafloor characterization
studies.

King (1967) used echograms to classify five sedi-
mentary bottom types. The echogram classification is

Figure 4. Seagrass study distribution around the world (Map created by T. Bakirman).

Table 4. Ground truth collection method usage count.

Method Count

Video 38

Scuba 22
Grab 7

Method not stated 4
Aerial image 2

Buoy 2
Image 2
Vegetation sampler 1
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based on shape and compaction of the bottom sedi-
ment. In 1979, Pace and Dyer used Gray-Level Co-
occurrence Matrices (GLCMs) for seafloor character-
ization and textural analysis of side scan imagery
introduced by Haralick, Shanmugam, and Dinstein
(1973). They suggest quickly computable 14 grey-
tone spatial dependent features calculated based on
average spatial relationships between pixels. More
grey level features have been proposed by scientists
in the following years. For example, Pace and Dyer
(1979) exploited 11 features in their study, 8 of which
are defined by Haralick (1974) and 3 of which are
defined by themselves. They have applied a decision
rule model based on Euclidean distance for classifica-
tion of SSS image. Chivers (1990) and Orlowski
(1984) have proposed a method benefits from
a measurement of the relationship between energy
features using multiple echoes from the bottom to
determine sedimentation type which generally known
as E1 (roughness) – E2 (hardness) method. Reut,
Pace, and Heaton (1985) developed a spectral analysis
method that widens system bandwidth and can clas-
sify signals scattered from six seabed types. They state
that the shape of the probability distribution of the
scattered field intensity is related to seafloor rough-
ness and not sensitive to hardness. Pace and Gao
(1988) proposes new spectral based features derived
from the power spectrum of the backscattered signals
using Fourier analysis to discriminate six seabed
types. Reed and Hussong (1989) also employed
GLCMs for classification of SeaMARC II SSS ima-
gery. They applied principal component analysis
(PCA) on 14 features proposed by Haralick (1974).
Angular second moment, contrast, entropy and angu-
lar inverse difference moment have been determined
as most contributing features among all. They also
propose a new feature based on the sum of the
differences of orthogonal GLCMs which is
a measure of the isotopy of the image. They utilised
a modified version of unsupervised k-means and
supervised minimum distance classification algo-
rithms on SeaMARC II SSS images. In Lurton and
Pouliquen (1992)’s approach, signal envelopes have
been integrated, normalized, averaged and compared
with the theoretical curves for seven sea bottom
types. Schiagintweit (1993) presents field results of
RoxAnn system which uses E1-E2 method to map
five distinct sediments. Hughes Clarke (1994) devel-
oped a technique to produce backscatter strength as
a function of grazing angle using GLORIA SSS and
SeaBeam MBES. They utilise an empirical approach
for classification where angular response curves are
matched with in situ data and matched pairs are then
used to deduce the process for other regions without
in situ data. Stewart, Min, and Marra (1994) have
applied a neural-network approach on feature space
derived from backscatter. The algorithm focuses on

feature selection, training-pattern design and network
configuration.

The first automated classification of seagrass study
was carried out in 1995 by scanning original SSS
images into a digital environment (P. Siljeström,
Moreno, & Rey, 1995). The authors applied isodata,
maximum likelihood and minimum distance classifi-
cation algorithms to scanned sonar images to pro-
duce a distribution map for P. oceanica for their
study area. This study can be taken as a pioneer
automatic classification approach for seagrass related
studies. Before this study, most of the seagrass map-
ping-related studies were realized by manually or
visually measurements from sonar images.

As echo sounders with digital output capability
have become widespread and with the development
of narrow beam MBES, sonar image classification
applications have increased. Hughes Clarke, Mayer,
and Wells (1996) have created angular response
curves for sediments using EM1000 MBES at
95 kHz. They stated these curves alone are not dis-
criminative enough; however, they would be useful
with the combination of textural features such as
GLCMs (Reed & Hussong, 1989) and power spectral
methods (Pace & Gao, 1988). Dugelay, Graffigne, and
Augustin (1996) proposed a semi-automatic mosaic
interpretation for low-frequency deep water MBES
based on segmentation using a Markov Random
Field. The algorithm considers statistical and geome-
trical properties of the pixels with corrections for the
variations of angular backscattered signals as
explained by de Moustier and Alexandrou (1991).
Siccardi et al. (1997)’s study focused on analysing
seabed vegetation in terms of presence-absence and
sparse-dense via high frequency 2 MHz sector scan
sonar. They extracted features from bathymetry (e.g.
mean value, standard deviation, mean deviation,
skewness, kurtosis, target range, signal range) and
backscatter (e.g. energy, entropy, contrast, homoge-
neity GLCMs). They applied PCA on feature space
and determined 6 features account for 91% of all
features. K-means algorithm was exploited for classi-
fication of remaining feature space. In studies of
Blondel (1999) and Blondel, Parson, and Robigou
(1998), only entropy and homogeneity GLCMs are
used in a software package called TexAn, which was
developed for seafloor characterization. For classifica-
tion of sediment types, they applied the measurement
space guided algorithm, which is stated to have the
advantage of not to be biased by the statistical pre-
dominance of some regions. In Pasqualini, Clabaut,
Pergent, Benyoussef, and Pergent-Martini (2000)’s
study, filtering, thresholding and statistical clustering
have been applied to segment P. oceanica seagrass
bed textures. This clustering method is based on
statistical properties of pixels and pixel neighbour-
hood correlation information. In 2001, an Acoustic
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Ground Discrimination Systems (AGDS) called
SAVEWS was developed by the US Army Engineer
Research and Development Centre that works based
on bottom tracking (Bruce M. Sabol & Johnston,
2001). The system analyses the data via the U.S.
Army Corps of Engineers developed signal processing
algorithm. The first step of the algorithm is to detect
and track the bottom, and then, the spatial distribu-
tion of echo intensity above the determined threshold
level is examined above the detected bottom for
vegetation (B. M. Sabol & Burczynski, 1998; Sabol,
Kasal, & Melton, 1998). The drawback of this method
is that system cannot properly track bottom in dense
seagrass areas due to the high reflectivity of seagrass
depending on its species and density (B. Sabol et al.,
1997). The algorithm overcomes this problem by
creating a depth histogram with each GPS ping. The
system calculates the sharpest rise and the most com-
monly occurring depth is queried in the histogram
with each GPS ping. The latest updated version of
this system is called SAVEWS Jr. (B. Sabol et al.,
2014). In the same year, Preston, Christney,
Bloomer, and Beaudet (2001) demonstrated sediment
classification results of QTC Multiview software. The
software produces over 130 features such as GLCMs,
Fast Fourier Transforms (FFTs), fractal dimension,
high order moments, histogram and quantile. Since
it would not be sufficient to cluster over 130 features,
PCA has been applied to reduce feature space.
Finally, k-means method is employed on reduced
feature space for classification of the sea bottom.
Atallah et al. (2002) used wavelet analysis based on
grain size on bathymetric SSS data for seafloor sedi-
ment classification. Tęgowski, Gorska, and Klusek
(2003) developed an algorithm that uses maxima
location in echo envelope series to determine the
bottom via 208 kHz BioSonics DT 4200. They have
studied a series of echo envelope parameters, such as
spectral width and fractal dimension. They have com-
pared vegetated and bare bottom in terms of these
parameters. In Komatsu et al. (2003)’s study, seagrass
has been distinguished from the bottom using the
difference in depth between maximum depth and
the sandy bottom. They have used this approach to
map the distribution of seagrass and estimate seagrass
volume and biomass. In a more recent study, they
have used a similar technique to map three categories
of relative abundance as dense, sparse and little to no
seagrass (Hamana & Komatsu, 2016). Cutter,
Rzhanov, and Mayer (2003) have implemented
a modified version of local Fourier histograms texture
feature classification method to MBES data for auto-
matic seafloor segmentation. A local Fourier trans-
form is calculated for each cell which provides
information to characterize the frequencies in the
signal. Finally, the classification is utilised by using
fuzzy k-means cluster analysis. Dartnell and Gardner

(2004) proposed a two-step empirical technique that
exploits both bathymetry and backscatter data to
predict seafloor sediments on a pixel by pixel basis.
The first step is to apply supervised classification on
backscatter based on grain size and ground truths.
The results are then used in the latter step as rules for
a hierarchical decision tree classification. Collier and
Brown (2005) have investigated the correlation of SSS
backscatter with grain size distribution using dual
frequency (100 and 410 kHz) SSS and 22 sediment
grab samples. They processed the raw sonar data and
extracted statistical information for comparison with
sediment grain size based on appliying empirically
derived amplitude grazing angle correction to the
acoustic data.

One of the main progress in backscatter processing
is the development of the GeoCoder package by
Luciano Fonseca from The Centre for Coastal and
Ocean Mapping at the University of New Hampshire.
GeoCoder is a mosaicking tool that can read back-
scatter data in multiple formats and apply radio-
metric and geometric corrections to the data
including corrections for beam pattern effects. The
package also includes remote estimation of surficial
seafloor properties by appliying of an unsupervised
Angular Range Analysis (ARA) method which pre-
serves the backscatter angular information to use it
for seafloor characterization. The process applies cor-
rections for seafloor slope, beam pattern, TVG, angle
varying gain (AVG) and insonification area. Then,
four parameters from near range (90°–65°), four
parameters from far range (65°–35°), one parameter
from outer range (35°–5°) and orthogonal distance
parameter from intercept-slope graph are calculated.
Finally, the average angular response is compared to
density fluid models derived from the Biot theory
(Williams, 2001). Although this theory only takes
sedimentations into consideration, it cannot be used
in seagrass mapping. The GeoCoder package is
licensed for most commercial hydrographic software
such as Caris, Reson, Fugro, Triton, Hypack, IVS 3D
and Chesapeake Technology (Fonseca, Brown,
Calder, Mayer, & Rzhanov, 2009; Fonseca & Calder,
2005; Fonseca & Mayer, 2007).

Gavrilov et al. (2005) have measured angular
response curves of backscatter at 450 kHz for high
and dense seagrass and sand covered seafloor. It is
stated that high and dense seagrass depends weakly
on the incidence angle. Even though sand backscat-
tering level is relatively low, it decreases considerably
with the incidence angle. In his PhD thesis, Parnum
(2007) developed a feature space called angle cube
which is derived from backscatter. It is created by
approximate reconstruction of the angular depen-
dence at each point of the grid using spatial inter-
polation. Following feature reduction, unsupervised
and supervised classification methods have been
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applied on remaining feature space combined with
bathymetric features (slope, standard deviation, etc.).
He applied his technique to multiple study areas with
vegetation such as seagrass and rhodolith.
Ierodiaconou, Laurenson, Burq, and Reston (2007)
used high and low pass filters to backscatter data to
obtain three band false colour image. This image was
processed along with bathymetry derivatives to create
an automated decision tree classification system for
benthic habitat mapping. Hamilton (2007) statisti-
cally clustered curves using Clustering Large
Applications algorithm developed by Kaufman and
Rousseeuw (1990). This method was employed in
a later study by Hamilton and Parnum (2011) for
unsupervised clustering of backscatter curves from
across the port and starboard side of the swath for
seabed segmentation including seagrass and rhodo-
lith. Lucieer (2007) and Lucieer (2008) proposed an
object-oriented hierarchical classification via
e-Cognition software to identify reef and sand areas.
Erdey-Heydorn (2008) developed an ArcGIS Seabed
Characterization Toolbox to investigate benthic habi-
tats. The toolbox includes a supervised texture classi-
fication workflow based on SSS mosaic, bathymetry,
hillshade and rugosity. Maximum likelihood classifier
is applied to these datasets. And finally, classification
results are combined with Bathymetry Position Index
(BPI) grids to create final habitat maps. Rattray,
Ierodiaconou, Laurenson, Burq, and Reston (2009)
have used QUEST (Quick Unbiased Efficient
Statistical Tree) decision tree classifier (Loh & Shih,
1997) on combined bathymetry and backscatter deri-
vative data to map five benthic biological groups
including algae and invertebrates. Fakiris and
Papatheodorou (2009) have developed a MATLAB
toolbox for acoustic classification of SSS imagery
called SonarClass. The toolbox creates five GLCMs,
four first-order grey statistics and two 2D Fourier
spectrum statistics. Following the employment of
a novel feature reduction process on feature space,
nearest neighbour classification method is applied to
the data. Simons and Snellen (2009) presented
a supervised Bayesian seafloor classification method
that uses MBES averaged backscatter data per beam
at a single angle. As a first step, the algorithm starts
with non-linear curve fitting which is fitting a model
to the histogram of selected measured backscatter
strengths. After determining the probability distribu-
tion function for each seafloor type, Bayes decision
rule classification is applied to the data. In later years,
Alevizos, Snellen, Simons, Siemes, and Greinert
(2015) improved this method by utilising
a combination of beams simultaneously to obtain
the optimal number of classes for unsupervised clas-
sification. Preston (2009) have created 132 GLCMs,
first- and second-order statistics from backscatter and
applied PCA for feature reduction. For clustering

80 km2 multibeam survey data of Stanton Banks,
Mahalanobis distance method was used. Lucieer and
Lucieer (2009) applied fuzzy clustering algorithm
(FCM) which is an extension of unsupervised
k-means or isodata method and fuzzy maximum like-
lihood estimation clustering for seafloor classifica-
tion. FCM provides similar results to k-means and
isodata and also contains information class member-
ship and classification uncertainty. Marsh and Brown
(2009) have employed an artificial neural network
(ANN) model called self-organizing map (SOM)
(Kohonen, 1990) to classify MBES backscatter and
bathymetry. SOM can effectively create a low-
dimensional representation of high-dimensional
input signals. The architecture has been applied
based on normalized backscatter strength and bathy-
metric beam-level data. In the mentioned study, SOM
was evaluated by comparing with other classification
methods such as isodata, learning vector quantisation
and competitive neural network. It has been observed
that SOM is an efficient method for classifying MBES
data with high accuracy. De Falco et al. (2010) inves-
tigated relationship between multibeam backscatter,
sediment grain size, and P. oceanica seagrass distribu-
tion. The most important finding related to seagrass
mapping in this study is that the acoustic response of
seagrass is mainly linked to the leaf canopy rather
than the substrate it is growing on. Ierodiaconou,
Monk, Rattray, Laurenson, and Versace (2011) com-
pared three automated classification techniques for
predicting benthic biological communities using the
same training and evaluation datasets. The three clas-
sification methods were QUEST, CRUISE
(Classification Rule with Unbiased Interaction
Selection and Estimation) (Kim & Loh, 2001) and
maximum likelihood. According to the results, the
QUEST method provided better results than other
methods. While CRUISE method still provides an
overall accuracy close to QUEST, maximum likeli-
hood method produced poor results with the max-
imum overall accuracy of 39%. Lucieer and Lamarche
(2011) utilised unsupervised FCM to sediment sam-
ples to identify most appropriate class count and their
spatial cores. FCM results are used as training sam-
ples for classification of MBES imagery using object-
based image analysis (OBIA). The MBES backscatter
and bathymetry have been segmented into smaller
objects using Definiens Developer v8.0 software.
After the creation of object features (GLCM entropy
and correlation), nearest neighbour supervised classi-
fication was applied and four sediment classes were
obtained. Micallef et al. (2012) proposed a multi-
method GIS-based geomorphometric and textural
analytical technique to map habitat distribution
using high-resolution MBES data. The method starts
by classifying the seabed into morphological zones
and features based on morphometric derivatives
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(e.g. slope gradient, profile curvature), BPI and geo-
morphometric mapping. Then the area is divided into
two zones as unvegetated and seagrass covered areas
based on roughness estimation. Unvegetated areas
were classified into sedimentation using maximum
likelihood classifier on entropy, homogeneity and
backscatter intensity. Seagrass covered areas were
classified into seagrass on sand and gravel and sea-
grass on sand using maximum likelihood classier on
bathymetry data. Finally, morphology and composi-
tion results were combined to produce a habitat dis-
tribution map of the study area. Sánchez-Carnero,
Rodríguez-Pérez, Couñago, Aceña, and Freire (2012)
used vertically oriented SSS to detect and map
P. oceanica meadows. They used acoustic data saved
as RAW files integrated with GPS data in NMEA
format. After bottom detection, the first meter
above the bottom is considered to have possible
plants of interest. In that range, intensities higher
than the determined threshold is estimated as vegeta-
tion. Using Scuba diving data as ground truth, the
detection method’s accuracy is calculated as 72%.
Hasan, Ierodiaconou, and Monk (2012) combined
angular response classification and backscatter
image segmentation for benthic biological habitat
mapping. Angular response curves have been classi-
fied using QUEST decision tree along with ground
truth data. Backscatter image was converted into
a pseudo colour image. The image was segmented
using mean-shift technique via Edge Detection and
Image Segmentation (EDISON) tool based on five-
dimensional feature space (R, G, B, X, Y). The seg-
mented polygons centroids were calculated, and near-
est neighbour algorithm was exploited to assign
predicted class information from angular curves to
polygons. This method was utilised to map distribu-
tions of invertebrates, red and brown algae. Rzhanov,
Fonseca, and Mayer (2012) benefit from angular
response data to label over segmented backscatter
image mosaic. This labelling process is conducted
by constructing a catalogue. They propose three
methods for automatic catalogue construction. The
first approach is using quasi-random sampling of the
physical parameter space such as acoustic impedance,
roughness, etc. The second approach benefits from
backscatter strength versus grazing angle histogram.
The third approach is based on coarse segmentation
of backscatter mosaic into segment expected in the
catalogue. Brown, Sameoto, and Smith (2012) derived
six features from MBES data. Bathymetry, slope, cur-
vatures and three principal components of QTC tex-
tural features are used for CLUSTER procedure in
Idrisi software. This procedure uses a histogram peak
technique of cluster analysis based on a maximum of
seven layers. Hasan, Ierodiaconou, and Laurenson
(2012) compared performances of maximum likeli-
hood classifier, QUEST, random forest and support

vector machine (SVM) in classifying MBES backscat-
ter data. For biota classification, SVM and random
forest have provided the highest overall accuracy with
84.8% and 83.8%, respectively. The same methods
resulted in high overall accuracies for substratum
with 82.6% and 83%. Lucieer, Hill, Barrett, and
Nichol (2013) investigated methods to derive accu-
rate spatial products for shallow coastal water
through MBES data classification methods and seg-
mentation scales along with autonomous underwater
vehicle images. They employed 12 bathymetry and 6
backscatter derivatives. MBES data was segmented in
two different scales (30 and 60) to investigate the
influence of segment size on classification accuracy.
The segmented images were classified using classifi-
cation trees, random forests and k-nearest neighbour
for substratum, rugosity and sponge cover individu-
ally. Random forest with 30 segmentation scale pro-
vided the highest overall accuracy for classification of
substratum and rugosity, while k-nearest neighbour
with both segmentation scale performed best for
sponge classification with same overall accuracy
value. Huang, Siwabessy, Nichol, Anderson, and
Brooke (2013) tested seven feature analysis
approaches for classification of MBES backscatter
angular response curves to map seabed cover types.
The multibeam swath was split into port and star-
board sides, and the angular response curves with 1°
bin were generated between 4° and 51° incidence
angles using 97 seabed samples. They propose 7 fea-
ture analysis methods that produce 4 to 48 variables
for classification. Supervised classification process
with seven sediment classes was executed using the
Probability Neural Network (Specht, 1990) in
DTREG software. Diesing et al. (2014) evaluated
OBIA and machine learning (random forest) techni-
ques for classifying MBES data to map seabed sedi-
ments. OBIA and random forest classification
processes were executed on backscatter and bathyme-
try derivatives. A pixel-by-pixel comparison of classi-
fication results was carried out with the Map
Comparison Kit software (Visser & de Nijs, 2006).
Random forest method outperformed OBIA with an
overall accuracy of 76%, while overall accuracy for
OBIA was 67%. Stephens and Diesing (2014) evalu-
ated six supervised classification techniques for MBES
and grain size data. These techniques are classifica-
tion trees (CT), SVM, k-NN, neural networks (NN),
random forest (RF) and naive bayes (NB). After
creating secondary acoustic features from backscatter
and bathymetry, classifiers were trained using differ-
ent input features. First training data consists of
solely bathymetry and backscatter. Second training
data consists of features from results of feature reduc-
tion process. Final training data covers all of the
input features. NB technique with second training
data (NB2) outperformed other methods with other
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training datasets. In a later study, they took their
work to another step. Instead of comparing different
classification techniques, they combined best per-
forming classification results according to balanced
error rate (Diesing & Stephens, 2015). They created
a three model combination (NB2, RF2, CT1) and five
model combination (NB2, RF2, CT1, NN1, SVM1).
The five model ensemble outperformed three of the
five component models (RF2, NN1, SVM1).
Additionally, the authors propose a novel measure
of confidence based on agreement and accuracy.
Calvert, Strong, Service, McGonigle, and Quinn
(2015) evaluated maximum likelihood supervised
classification and iso cluster unsupervised classifica-
tion on three MBES datasets, namely backscatter,
backscatter with bathymetry and derivatives, bathy-
metry and derivatives. Buscombe et al. (2016) pro-
posed a new algorithm that uses spectral analysis on
echograms for automated riverbed sediment classifi-
cation using low-cost SSS. The routine estimates
average lengthscales of acoustic fluctuation in signals
from echograms which are statistical representations
that integrate with attributes of bed texture. These are
calculated by using a Morlet Wavelet Transform and
removal of bias caused by varying sonar geometry. In
another study, this method was integrated into open
source and freely available a software package called
PyHum which also offers data processing and correc-
tion tools (Buscombe, 2017). Rahnemoonfar and
Rahman (2016) proposed an automatic method to
detect seagrass potholes using SSS images. They
applied mathematical morphology technique and cal-
culated standard deviation to enhance the image and
identify the pothole patterns. Same authors developed
another process to detect seagrass potholes in sonar
images (Rahnemoonfar et al., 2017). This process
starts with image enhancement consisting of adaptive
thresholding and wavelet noise removal. Finally, level
set method is applied to detect boundaries of pot-
holes. In Rahnemoonfar, Rahman, Kline, and Greene
(2018), they applied slightly different image enhance-
ment and seagrass pattern identification steps. Sonar
image is enhanced by applying adaptive histogram
equalization, top hat filter, and Gaussian adaptive
thresholding. Then, seagrass patterns are identified
by executing binarization by optimum threshold
and filling up holes and extracting potholes by using
closing morphological filtering. Montereale Gavazzi
et al. (2016) compared textural analysis (TexAn),
Jenks Optimization, maximum likelihood, OBIA
(e-Cognition) and manual classification methods for
seabed mapping using MBES and ground truth data.
They identified SAV, bare muddy bottom and
sponges. According to their results, pixel based
method provides higher accuracies and accuracy
measure depend highly on the number of classes.
Herkül, Peterson, and Paekivi (2017) used the

mathematical models of RF and generalized additive
models on MBES data to map seabed substrate.
Statistics are calculated from bathymetry, backscatter,
slope, and GLCM textural features. These statistics
are independent variables in models created in
R statistical software package to map distributions
of the hard and soft substrate, Mytilus and hydrozoa.
It is stated that most dominant variables in models
are mean depth and mean backscatter statistics.
Ferretti et al. (2017) used different classification tech-
niques to map P. oceanica distribution via ROV
equipped with SBES and video recorder. NN, deci-
sion trees and SVM were applied on acoustic data,
and all methods provided high accuracies in
P. oceanica detection. Buscombe, Grams, and
Kaplinski (2017) proposed a method which focuses
on strengthening the relationship between backscatter
and sediment composition using MBES to map
a canyon river consisting of sand, gravel, cobbles,
boulders and SAV. The method starts with the
removal of beam scale and spectral filtering of supra-
beam scale topographic effects in backscatter. The
results show that the high pass component associated
with bed forms topography or vegetation and the low
past component associated with sediment patches.
Finally, coherent scales between backscatter and
topography are analysed using cospectra. Hamill
et al. (2018) used linear least squares and GMM (2
models) for automated segmentation of bed textures
using recreational-grade SSS. In this study, SSS ima-
gery is used to derive first order statics and GLCM
textures. GMM results seem more promising for
applications in areas consisting of similar sedimen-
tary environments. Turner, Babcock, Hovey, and
Kendrick (2018) investigated efficiency of single clas-
sifiers against model ensembles for seabed substratum
maps. The model ensemble is constituted from RF,
CT and NB where each classifier votes for each point.
Then, substratum is classified based on the majority
of voting. If no class can provide the majority, the
point is classified based on the vote of the best per-
forming classifier (in this case RF). It is stated that
even though model ensembles provide better accu-
racy, it is not always required unless single classifier
performance is poorer than expected. Ierodiaconou
et al. (2018) analysed combination of pixel-based
(PB) and OBIA of MBES data for habitat mapping
including seagrass and macro algae in shallow waters.
PB and OBIA derivatives were created and used as
predictors in RF modelling. Although OBIA results
have overall accuracy higher than PB approach,
a combined model approach outperformed OBIA
and PB methods alone. Lacharité, Brown, and
Gazzola (2018) aimed to create a single habitat map
from four non-overlapping surveys via 4 MBES with
different frequencies. They proposed a classification
technique for bathymetry and uncalibrated
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backscatter which consist of segmentation with OBIA
and classification using supervised nearest neighbour
algorithm. Since backscatter depends directly on the
frequency, this classification workflow was applied to
each survey separately, and then combined to create
a seamless benthic habitat map. Buscombe et al.
(2018) compared GMM and CRF probabilistic mod-
els for seafloor classification using multispectral back-
scatter against monospectral backscatter. According
to study results, both approaches performed better
with multispectral backscatter compared to each
monospectral backscatter frequency alone (100, 200,
400 kHz). Additionally, comparing two methods
based on multispectral backscatter, CRF provided
a higher average classification accuracy. Gaida et al.
(2018) proposed an extension of the Bayesian method
for seafloor sediment classification using multispec-
tral backscatter data. Results indicate that use of
multispectral backscatter leads to improved discrimi-
nation between different sediment types. Costa
(2018) employed regression trees to classify seven
benthic habitats. The results of this study show that
multispectral backscatter is more suitable for soft
bottom applications.

Review of developed classification techniques for
seabed mapping shows that pre-processing of acoustic
data has a strong effect on classification accuracy and
results. This is relatively straightforward for bathymetry
processing since guidelines for data processing and
minimum standards have been determined by The
International Hydrographic Organization (Iho, 2008).
However, since backscatter is under the influence of
frequency, navigation, sonar geometry, seafloor charac-
teristics, etc., it is more complex to specify workflows
for all scenarios. Therefore, in most studies, processing
of the backscatter data is site or application specific.
There are also corrections during data acquisition
applied by the sonar itself which are not always clear
enough to researchers. Considering mentioned factors,
Backscatter Working Group (BSWG) within GeoHab
have published guidelines and recommendations for
backscatter processing (Lurton & Lamarche, 2015).
Wewill not further discuss the processing of backscatter
data here, as this topic extensively analysed recently by
researchers in terms of MBES backscatter (Lamarche &
Lurton, 2018; Schimel et al., 2018), recreational grade
SSS backscatter (Buscombe, 2017) and comparison of
MBES and SSS (Le Bas & Huvenne, 2009).

Automated classification of seagrass distribution
can be performed using signal-based and image-
based classification methods. Signal-based methods
deals with echograms (SBES), sonograms (SSS) and
angular response curves (MBES). Single beam AGDSs
such as SAVEWS, RoxAnn and QTC View exploit
unsupervised signal-based methods. These methods
are based on bottom tracking (Sabol & Johnston,
2001), roughness-hardness (Gavrilov et al., 2005) and

Bayesian cluster analysis (B. Riegl, Moyer, Morris,
Virnstein, & Dodge, 2005), respectively. There are
also studies dealing with supervised classification of
raw SBES data using clustering (Munday, Moore, &
Burczynski, 2013) and machine learning techniques
(Ferretti et al., 2017). According to reviewed studies,
it can be said that, due to point based data acquisition
geometry of SBES, researchers have shifted to swath
systems which provide more coverage.

Employment of signal-based methods on SSS data
is not investigated widely for seagrass mapping appli-
cations (Karpouzli & Malthus, 2007; Sánchez-
Carnero et al., 2012). Angular response curves are
found to be useful to discriminate different seafloor
types (Hughes Clarke, 1994). Since SSS cannot pro-
vide integrated bathymetry with backscatter, it cannot
be used for angular response analysis due to lack of
geometrical information (Brown et al., 2011).

With the capability of high-resolution simulta-
neous bathymetry and backscatter data acquisition,
MBES is efficient hardware for this analysis. Gavrilov
et al. (2005) created angular response curves based on
incidence angle for seagrass using MBES at 450 kHz.
Studies indicate that angular response curves are effi-
cient features to map seagrass distributions (De Falco
et al., 2010; Hamilton & Parnum, 2011; Parnum,
2007) and both unsupervised and supervised classifi-
cation methods can discriminate seagrass patches
successfully (Parnum, 2007).

Image-based methods which generally employed
to swath systems deal with raster data of bathymetry,
backscatter and derivatives. SSS is an adequate system
for geological and geophysical mapping (Brown &
Collier, 2008). Despite image-based methods on SSS
are utilised in seagrass mapping studies (Legrand
et al., 2010; Moreno López, Rey Salgado, &
Siljeström, 1998; Pasqualini et al., 2000; Siljeström
et al., 1995), SSS is not used in machine learning
methods due to lack of bathymetry data.

Processed MBES data consist of regular gridded
bathymetry and angle independent mosaicked back-
scatter imagery. Workflows of image-based methods
generally start with feature extraction since it is not
feasible to perform classification only with these two
datasets. There are several derivatives of bathymetry
and backscatter used in image-based seabed classifi-
cation studies (Diesing, Mitchell, & Stephens, 2016).
The most common bathymetry derivatives can be
summarized as slope, aspect (northness and eastness),
standard deviation, BPI, rugosity, and curvature.
Bathymetry derivatives can be used solely for mor-
phological segmentation. However, this is not the
case generally for seagrass mapping as this process
requires textural features with the exception of meth-
ods based on depth range (Hamana & Komatsu,
2016; Komatsu et al., 2003; Sabol et al., 2007) and
roughness estimation (Micallef et al., 2012). The most
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common backscatter derivatives can be summarized
as GLCM, ARA, Hue-Saturation-Intensity (HSI), FFT
and Moran’s I. We observed there is no common
accepted agreement on selection of appropriate fea-
tures which are the best for seagrass mapping. For
example, Ierodiaconou et al. (2018) preferred to use
HSI to create false colour backscatter image, while
Blondel, Prampolini, and Foglini (2015) used GLCM
Homogeneity and Energy. Feature extraction process
is generally followed by feature selection as it is not
practical to use all calculated derivatives in classifica-
tion due to computational time and accuracy. The
objective of feature selection is to determine the most
contributing data sets and eliminate inferiors. This is
achieved by feature reduction (or dimensionality
reduction) of feature space algorithms such as PCA.

Image-based classification methods for seagrass
mapping using MBES data can be grouped as (i)
unsupervised or supervised, and (ii) pixel-based or
object-based classification. Whilst the application of
sediment mapping via MBES is widely carried out
using OBIA (Lacharité et al., 2018), machine learning
(Turner et al., 2018), supervised and unsupervised
classification (Calvert et al., 2015), combined
approach (Diesing & Stephens, 2015) and statistical
learning (Herkül et al., 2017), applications of these
methods for seagrass mapping is limited.
Ierodiaconou et al. (2007) applied automated decision
trees on backscatter and bathymetry derivatives. Di
Maida et al. (2011) exploited statistical decision trees
to discriminate seagrass meadows. Blondel et al.
(2015) used unsupervised k-means clustering on
GLCM homogeneity and energy. Ierodiaconou et al.
(2018) combined PB and OBIA using RF for
improved classification accuracy. While unsupervised
methods do not require input data except class num-
ber for classification, in situ data is still needed for
labelling or validation. Recently, Calvert et al. (2015)
evaluated supervised and unsupervised classification
methods for benthic habitat mapping. However, main
interest seems shifted to machine learning methods
and model ensembles of multiple methods. This is
also the case in seagrass mapping applications, yet the
evaluation of supervised and unsupervised machine
learning methods such as SVM and SOM for seagrass
mapping remains unexplored to date.

Multispectral backscatter can be a milestone that
will shift benthic habitat mapping studies to a higher
level. The ability to collect data with multiple fre-
quencies simultaneously better discriminates seabed
characteristics (Daniel Buscombe et al., 2018; Costa,
2018; Gaida et al., 2018). There is no study to date
dealing with this recent technology for seagrass map-
ping application. Since multiple backscatters allow to
create false colour images which include different
information in each band, this may ease the process
to adapt terrestrial remote sensing methods to image-

based seabed classification. Besides this, using false
colour images, various indices like NDVI can be
created for better discrimination of seagrass and
other SAV.

Another approach can be the use of each back-
scatter individually to extract derivatives from back-
scatter at different frequencies. This method can be
evaluated to indicate which frequency contributes the
most for seagrass detection, as Costa (2018) demon-
strated for sediments.

Conclusions

Anthropogenic effects such as fishing, trawling,
coastal infrastructures threaten marine ecosystems
and reduce benthic biodiversity. Seagrasses are an
indispensable heritage of marine ecosystem and con-
siderably fragile to these activities since they habitat
generally in shallow coastal zones (Duarte, 1991).
Therefore, it is critical to map the distribution of
seagrass to make policies and determine MPAs.
From this perspective, if seagrasses are protected,
then the biodiversity-related with seagrass will also
be protected (Harris & Baker, 2012). There are several
methods for benthic habitat and seagrass mapping. In
this paper, we examine 91 studies related to seagrass
mapping, monitoring, and detection using acoustic
systems under the 12 headings in Table 2, from
which, these conclusions are stated:

● Various methods of seagrass mapping were used
by researchers in the literature. Recently, most
studies have focused on either MBES, SSS or
SBES and using MBES increased after 2003 due
to hardware developments (narrow beam
angles) that allows it to acquire high-resolution
backscatter integrated with bathymetry. The
development of multispectral MBES opened
a new perspective and provided a more discri-
minative dataset for researchers. The pioneer
studies encourage us that this recent technology
can be implemented to seagrass studies to obtain
promising and reliable results. Recreational
grade SSS systems have also become quite pop-
ular in recent years as an alternative to survey
grade system which is employed to habitat map-
ping studies due to their cost effectivity even
though they do not provide high-resolution pro-
ducts as survey grade systems. Consequently, the
choice of the acoustic device can vary depending
on the size of study area, study area depth,
budget concerns and mapping strategy (auto-
matic or manual).

● It is a widely known fact that backscatter and
bathymetry is the most common dataset for
seagrass mapping. Multispectral backscatter
would also be a perfect addition to these core
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datasets in the future. Since this data set consists
of multiple bands, it can be used by applying
different image processing techniques, the accu-
racy of seagrass classification can be increased.
Beside this, it is a fact that the creation of dif-
ferent band combinations from false colour
images can obviously improve visual interpreta-
tion capability for manual studies. One can also
expect to come across seagrass studies dealing
with MBES water column data. This can be
explained by the need for high computing
power and hard disk space for collecting, storing
and processing of water column data.

● There is no common agreement on which fre-
quency is the best for discriminating seagrass.
According to the studies, seagrass backscatter
depends highly on leaf canopy rather than the
substrate it is grown on.

● Most studies obtained position information using
DGPS provides one decimetre to a metre accu-
racy is an acceptable level for most underwater
studies. According to the progress of the current
studies, in the future, RTK GPS systems can take
an important place. Especially in small study
areas, in terms of the reliability and usability of
data products, proper resource management and
determination of MPAs must be implemented
using high accuracy GPS solutions such as RTK
GPS. Researchers can also take advantage of GPS
tide information to improve vertical accuracy
using high accuracy GPS solution especially in
study areas with dynamic tide changes.

● Researchers frequently focused on two seagrass
species in their studies; P. oceanica and
Z. marina. If we examine the seagrass study dis-
tribution map in Figure 4, the study areas are
concentrated in the USA, Australia and Italy.
P. oceanica is an endemic plant that forms the
Mediterranean ecosystem, prevents coastal ero-
sion and regulates carbon dioxide absorption on
land and in the sea. This species has a long life
span while its growth rate and regeneration is
slow. Even though it is protected by EU legislation,
the Bern and Barcelona Conventions and national
legislation (Regulation, 2006), it is in decline. Even
it is already in a “Near Threatened” state in the
Western Mediterranean basin, it is believed this
species will be in a vulnerable state unless threats
are reduced. Therefore, to protect the future of
P. oceanica in the Mediterranean region, more
information on species distribution, and the
impact of the threats in the Eastern and Southern
Mediterranean basin is needed. Z. marina which
extends into the Arctic in Alaska, Canada,
Greenland and northern Europe and into the tro-
pics in Baja California and Mexico is found in the
north Atlantic and the North Pacific and in the

Mediterranean and Black Seas. Even though there
have been protection and rehabilitation efforts
since the 1940s in Europe and North America, it
is still declining in these areas. Additionally, the
current global population trend of Z. marina is
decreasing.

● In terms of the reliability, validation and accu-
racy of the study products, ground truth data are
essential. Therefore, as it has been integrated
into most of the studies, ground truth is a must-
have dataset for future work, especially for auto-
matic classification. It is now more feasible and
practical to collect ground truth data using tech-
nological ROV and AUV devices.

● Different freeware (SonarScope, PyHum) and
commercial software (HIPS&SIPS, FMGT,
Hypack, SonarWiz) are used in the seagrass-
related studies for surveying, post-
processing and classification. The processing of
backscatter data is a key factor as different soft-
ware for the same dataset can produce different
dB levels. BSWG have published guidelines and
recommendations for backscatter data acquisi-
tion and processing. As this report suggests,
hardware-related uncertainties in backscatter
measurements must be reduced by constructors.

● Although only 31 studies out of 91 reported
study area size, this information is important
to understand the applicability of the proposed
method for wider coverage areas. Largest and
smallest study areas are reported as 1400 km2

and 1.8 ha, respectively.
● Various benthic habitat and seagrass classifica-

tion methods have been reviewed. This can be
performed by signal-based methods using echo-
grams, sonograms, angular response curves and
image-based methods using backscatter and
bathymetry raster data. Signal-based methods
are widely integrated into AGDS based on bot-
tom tracking and MBES based on angular
response curves. Image-based methods are
mostly exploited in swath systems. MBES is
more preferred than SSS in image-based classi-
fication applications since MBES allows to create
more derivatives for feature extraction. It can be
clearly said that the seagrass classification
related studies have been evolved from semi-
automatic approaches to machine learning and
model ensemble methods. Additionally, use of
recent technology, multispectral backscatter can
ease the process to adapt terrestrial remote sen-
sing methods to image-based seabed classifica-
tion which would slightly close the gap between
terrestrial and marine remote sensing.

Seagrass mapping, detecting and monitoring stu-
dies have increased in recent years. Developments in
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machine learning technologies such as deep learning
can bring more efficient results and open a new per-
spective. The use of open acoustic data can allow
creating success deep learning architectures and sea-
grass classification problem can be solved easily. In
this context, we conducted a MBES (R2Sonic 2024)
survey in a 5 km2 study area in Gulluk Bay, Turkey,
to investigate performances of different segmentation
algorithms such as Mean-Shift, Iterative Simple
Linear Clustering, Whale Optimization, SVM, ANN,
Fuzzy Segmentation and the effects of backscatter
corrections for seagrass (P. oceanica) mapping. This
work aims to be a step towards a better understand-
ing of MBES backscatter processing and classifica-
tion. At the end of this study, we plan to share
obtained results as labelled data for future deep learn-
ing studies.

Sustainable monitoring of marine ecosystem
requires policies for controlling and supervising of
human activities which need to be realized urgently
to protect the marine ecosystem to save the future of
benthic habitat.
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