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A B S T R A C T   

Wetlands are one of the most valuable natural resources on earth and play an important role in preserving 
biodiversity. However, due to economic development and human disturbances, many wetlands across the world 
have deteriorated and disappeared over the past several decades. By using remote sensing images and point of 
interest (POI) data, we proposed a knowledge-based raster mapping (KBRM)-based framework and implemented 
it in the assessment of wetland ecological conditions in Suzhou, China. Density maps of waterbodies, vegetation 
covers, imperviousness, roads, and POI values were derived and used as five ecological indicators that can 
represent the ecological conditions of wetlands. The KBRM approach was used to integrate these indicators into 
an overall rating and map wetland ecological conditions efficiently. Thus, spatial variations in wetland ecological 
conditions can be distinguished and represented in detail. Cross validation was conducted with water quality 
data at 15 field sampling sites. The validation results demonstrated that the overall wetland condition scores 
generated by our approach and the water quality index (WQI) values calculated from water quality data were 
strongly correlated. These findings confirm that our framework could be used to effectively map and evaluate 
spatial variations in wetland ecological conditions and provide more support for policy-making in wetland 
protection and management   

1. Introduction 

Wetlands are one of the most valuable natural resources in the world, 
as they provide important habitats for a wide range of animal and plant 
species and serve a variety of natural, economic, social, and cultural 
functions (Mwita et al., 2013). However, due to economic development 
and human disturbances, many wetlands across the world have under
gone a variety of stress-inducing alterations, including hydrologic 
modification, land-use change alteration, pollutant runoff contamina
tion, eutrophication, and fragmentation, which has resulted in heavy 
impacts on wetland conditions. Wetland conditions concern the health 
or quality of wetlands and refer to the extent to which a site departs from 
full ecological integrity (Fennessy et al., 2004). Ecological integrity is 
the sum of physical, chemical, and biological integrity characteristics, 
which indicates correspondence with the original ideal wetland condi
tion (Fernandez et al., 2019). Wetland conditions, which are largely 
dependent on disturbances within and outside wetlands and their 
landscape types, are related to conservation and restoration activities 
and mitigation planning and decisions at sites or landscape scales. Thus, 

scientists and practitioners involved in wetland monitoring, construc
tion, protection, restoration, and management need appropriate 
assessment methods to evaluate the quality, performance, and relative 
success of their work (Mollard et al., 2013). 

In the past several decades, a wide variety of assessment methods for 
wetland conditions have been developed and implemented, ranging 
from rapid qualitative assessment methods to intensive quantitative 
methods (Langan et al., 2019). Among them, a three-tiered approach is 
commonly used to assess wetland conditions by the US Environmental 
Protection Agency (EPA, 2006). Level 1 wetland assessments are 
landscape-level methods that rely primarily on remote sensing and 
geographic information system (GIS) technologies. It can be used to 
rapidly acquire landscape-scale information about wetland conditions 
without the need for expensive and time-consuming field-based visits. 
Level 2 wetland assessments contain a medium intensity evaluation that 
requires rapid fieldwork and quantifies wetland conditions using rela
tively simple semiquantitative or qualitative field-based indicators 
(Fennessy et al., 2007). Level 3 wetland assessments involve the most 
intensive evaluation methods and require detailed field measurements 
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(Stryszowska-Hill et al., 2019). 
The choice of a specific level of assessment depends on different 

factors, such as budget, availability of relevant data at appropriate 
scales, technical capacity, and wetland accessibility (Tiner, 2018). Level 
2 and Level 3 assessments can obtain more representative and detailed 
results than Level 1 assessments. However, fieldwork and lab analyses 
make them expensive in terms of cost, labor and time. Therefore, they 
are often not affordable for large areas or inaccessible sites, especially 
those in developing countries (Cools et al., 2013). Conversely, Level 1 
assessments, which are based on the analysis of information from maps 
and remotely sensed imagery coupled with a basic understanding of 
wetlands, are designed to evaluate wetland conditions for large 
geographic areas with low costs and a high regional transferability 
(Stryszowska-Hill et al., 2019). 

The development of GIS and remote sensing technologies brings 
about significant improvements and new possibilities for Level 1 as
sessments. The supply of high-quality environmental data expands 
considerably when using these spatial information technologies (Yang 
et al., 2016a). Various landscape-level indicators, such as land-cover 
type, landscape fragmentation, slope gradient, wetland area, and 

aquatic connectivity, have been adopted to represent wetland conditions 
(Brooks et al., 2004; Mamoun et al., 2013; Weller et al., 2007). Based on 
these indicators, a variety of methods have been applied to infer and 
assess wetland conditions. Ausseil et al. (2007) used a weighted average 
of the scores of individual indicators to rank wetland conditions in New 
Zealand. Brown and Vivas (2005) proposed a landscape development 
intensity index (LDI) derived from emergy use per unit and land use 
data. It has been applied to wetland condition and habitat assessments in 
a few countries (Lane and Brown, 2007; Mack, 2006; Wang et al., 2020). 
Some scholars have designed a remote sensing-based ecological index 
(RSEI), which was formulated by integrating four indicators via prin
cipal component analysis (PCA) rather than a traditional weighted sum 
method (Xu et al., 2018; Jing et al., 2020). Sun et al. (2016) assessed 
wetland ecosystem health using the pressure-state-response (PSR) model 
by synthesizing remote sensing and statistical data. Yang et al. (2017) 
used the random forest method to select features from landscape in
dicators and realized wetland landscape assessment with a support 
vector machine. 

Additionally, there are multiple sources of social and economic in
dicators (e.g., population density and welfare index) integrated into 

Fig. 1. Locations of 58 wetlands assessed in the study area. The numbers correspond to the descriptions of Table A1.  

Z. Yang et al.                                                                                                                                                                                                                                    



Ecological Indicators 127 (2021) 107485

3

Level 1 assessments (Chen et al., 2019). Among them, point of interest 
(POI) data, which are recorded for three attributes (type, name, and geo- 
position), have been widely applied to understand urban environments 
from the human activities perspective (Liu et al., 2017). Given the 
availability of the location and related attributes of POIs, there has been 
steadily growing interest in studying a variety of research challenges in 
identifying, monitoring and analyzing POIs. In particular, POIs have a 
broad range of applications, including geomarketing, event manage
ment, and urban planning (Tran et al., 2021). Additionally, spatial 
patterns or distribution densities derived from POI data can represent 
human disturbances to urban and wetland regions (Chen et al., 2018). 
However, they rarely applied POI data to assess wetland conditions. 

The available data on the Suzhou wetlands are far from sufficient for 
governmental use in generating a concrete plan for protection and 
restoration. It is impossible for a Level 2 or Level 3 assessment to cover 
all wetlands with the current limited field data. Therefore, our goal is to 
develop a responsive, practical, cost-effective, and ecologically mean
ingful framework to assess the conditions of wetlands in Suzhou, China. 

The process of selecting indicators is challenging because ecological 
conditions can be assessed at a variety of locations, sizes, types and 
scales. Indicators should provide reliable, cost-effective, and ecological 
representations of wetland conditions (Faber-Langendoen et al., 2019). 
Deriving appropriate indicators and implementing reasonable assess
ments are challenging problems. Based on previous studies, other pub
lished literature and data availability, five indicators (density maps of 
waterbodies, vegetation covers, imperviousness, roads, and POI) were 
derived and quantified based on remote sensing images and POI data. 
Water, vegetation, and imperviousness are three main biophysical 
components of wetland ecosystems (Xu et al., 2018). Water has a major 
influence on the habitats of species living in wetlands (Ausseil et al., 
2007). Vegetation plays an important role in nutrient cycles and pro
ductivity as well as in reducing the effects of erosion and flooding 
(Mitsch and Gosselink, 2000). Imperviousness is used to identify 
anthropogenic features that affect wetland environments (Liu et al., 
2019a). Roads are commonly identified as having strong negative effects 
on wildlife and their habitats in wetlands (Fernandez et al., 2019). These 
five indicators are closely related to landscape patterns and human ac
tivities, which can be directly perceived by people and are used to 
evaluate ecological conditions. 

Our overall objective is to aggregate ecological indicators into an 
overall rating and develop an easily accessible framework to guide and 
refine the assessment of wetland conditions. Specifically, in this study, 
we (1) derived and integrated appropriate ecological indicators from 
remote sensing images and POI data; (2) identified the characteristics of 
spatial differentiation in wetlands; and (3) validated the effectiveness of 
the assessment results obtained by our method. The results could help 
relevant wetland managers develop scientific policies for wetland con
dition mapping and assessment and promote efficient protection and 
sustainable utilization of wetland resources. 

2. Study area and dataset 

2.1. Study area 

Suzhou is located in the southeastern Jiangsu Province and central 
Yangtze River Delta, China, within a range of 119◦55′-121◦20′E and 
30◦47′–32◦02′N. It contains six districts (i.e., Gusu, Huqiu, Industrial 
Park, Xiangchen, Wuzhong, and Wujiang) and four satellite cities 
(namely, Kunshan, Changshu, Taicang, and Zhangjiagang) (Xiao et al., 
2018). As a major tourism destination, Suzhou is renowned for its his
toric gardens and cultural heritages. Sometimes referred to as the “Water 
City” and “Land of Fish and Rice”, Suzhou is rich in wetland resources 
and famous for its dense river network and lake system as well as its 
man-made canals. Over the past several decades, Suzhou has experi
enced rapid economic growth that has caused resource overexploitation, 
environmental pollution, and ecosystem degradation (Long et al., 2015), 

which have imposed negative impacts on Suzhou’s wetland system, such 
as continuous deterioration, area shrinkage, bird and fish population 
reduction, and biological diversity diminution (Suzhou Municipal 
Agricultural Committee, 2010). To protect and restore degraded wet
lands, the municipal government of Suzhou conducted a preliminary 
survey of wetlands in 2009, which mainly included lacustrine wetlands. 
From 2014, the municipal government of Suzhou began to build several 
monitoring sites that were representative of the water quality and 
aquatic ecology of the wetlands. These monitoring sites were selected to 
be located across various wetlands in Suzhou. However, field data 
collected from these monitoring sites are still scarce. The paucity of field 
data, mainly due to the expensive and slow nature of field sampling, has 
hindered the assessment and management of wetlands (Salari et al., 
2014). 

Our specific study area is the administrative region of Suzhou, with 
an area of 7260 km2. It includes all six districts and four satellite cities. 
In the study area, 58 wetlands or wetland parks, which have been 
identified as municipal-level important wetlands by the municipal 
government of Suzhou (http://ylj.suzhou.gov.cn/szsylj/sdgk/wztt.sh 
tml), are included with a total area of 408.5 km2 (Fig. 1). Among 
them, the largest is the Yangchenghu Wetland (13), with an area of 
109.843 km2. The smallest one is the Manlihu Wetland (12), which oc
cupies an area of only 1.136 km2. 

2.2. Data collection 

Table 1 describes the five types of data that were acquired for this 
study. Landsat 8 OLI images taken on 2017–5-27 were retrieved from the 
US Geological Survey (USGS) website (https://glovis.usgs.gov), with 
path/row of 119/38 and 119/39 and a spatial resolution of 30 m. The 
wetland inventory and administrative boundaries in vector format were 
obtained from the Wetland Protection Station of Suzhou. Road network 
data were collected from OpenStreetMap (OSM) (https://www.ope 
nstreetmap.org). As the pioneer Volunteer Geographic Information 
(VGI) project, OSM data are freely available with relatively high posi
tional accuracy in urban regions. POI data were retrieved in 2017 from 
the Baidu Map Company (http://map.baidu.com), one of the most 

Table 1 
Datasets used in this study and their formats, sources and purposes.  

Dataset Format Spatial 
resolution/ 
Source 
scale 

Source Purpose 

Landsat 8 OLI 
images (Path: 
119, Row: 38, 
Path: 119, 
Row: 39) 

Raster 30 m USGS website 
http://glovis.us 
gs.gov 

Density map of 
waterbodies 
Density map of 
vegetation 
covers Density 
map of 
imperviousness 

Road network Polyline 
shape 

– OpenStreetMap 
(OSM) 
https://www. 
openstreetmap. 
org 

Density map of 
roads 

POI Points 
shape 

– Baidu Map 
Company, 
Chinah 
ttp://map. 
baidu.com 

Density map of 
POI values 

Wetlands 
Inventory 

Polyline 
shape 

1:10,000 Wetland 
Protection 
Station of 
Suzhou 

Boundary of 58 
wetlands 

Administrative 
boundaries 

Polyline 
shape 

1:10,000 Wetland 
Protection 
Station of 
Suzhou 

Boundary of 
districts in 
Suzhou  
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popular map services in China. A total of 401,646 records of POI data, 
which were classified into 20 categories by the Baidu predefined clas
sification system, were obtained within the study area. 

ArcGIS10.3 and ENVI5.3 + IDL8.5 were used to process the raw data, 
calculate ecological indicators, and generate an assessment framework. 
Radiometric and atmospheric corrections were performed to convert the 
digital number (DN) of the raw Landsat 8 OLI images to the reflectivity 
of the sensor. 

3. Methods 

We built a detailed workflow for this study (Fig. 2). This workflow 
included three major components. First, five indicators (i.e., density of 
waterbodies, vegetation covers, imperviousness, roads, and POI) were 
extracted and derived from the raw data. Second, based on the KBRM 
approach, five indicators were integrated into an overall score map that 
represented wetland conditions. Third, we validated our method by 
using water quality data and performed wetland condition assessments. 

3.1. Derivation of ecological indicators 

To understand the condition of wetlands in Suzhou, a total of five 
indicators were extracted and derived. First, three major features were 
retrieved from Landsat 8 OLI images, including open water bodies 
(rivers and lakes), vegetation covers and imperviousness. Road network 
and POI data were acquired from open public data sources. Then, den
sity maps of waterbodies, vegetation covers, imperviousness, roads, and 
POI values were processed and derived as ecological indicators. 

3.1.1. Waterbody 
For a lacustrine wetland, open water bodies have a determinant in

fluence on the habitats of those species living in wetlands (Ausseil et al., 
2007). The waterbody has a stronger absorbability in the SWIR band 
than in the NIR band, and the built-up class has a greater radiation in the 
SWIR band than in the NIR band. Based on this finding, an MNDWI index 
was proposed to extract the waterbody (Xu, 2006). 

MNDWI =
GREEN − SWIR
GREEN + SWIR

(1) 

where GREEN and SWIR are the TOA reflectance of GREEN and 
SWIR bands in Landsat 8 OLI images. 

The original values of MNDWI range from − 1.0 to 1.0. Based on 
visual interpretation, we only used the cells with values > 0.73 to 
represent the waterbody area. The higher the MNDWI value is, the more 
intensive the waterbody. 

3.1.2. Vegetation 
Wetland vegetation can reduce water velocity and contribute to 

impurity sedimentation and contaminant elimination. Additionally, it 
can provide habitats for birds and other animals (Pettorelli et al., 2011). 
Spectral vegetation indexes are most often used to estimate vegetation 
canopies from satellite images. The most commonly used index is the 
normalized difference vegetation index (NDVI) (Tucker et al., 1985). 
However, NDVI has been shown to be very sensitive to soil optical 
properties under incomplete vegetation cover conditions, which often 
occur in urban regions. Therefore, we calculated the soil-adjusted 
vegetation index (SAVI), which uses a soil adjustment factor L to 

Fig. 2. Flowchart for this study. Steps of indicator derivation, integration, mapping, validation, and assessment are included in the workflow.  
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account for soil background variations and is more useful for identifying 
vegetated areas in urban regions (Huete, 1988). The SAVI is expressed as 
follows: 

SAVI = (NIR − RED)(1+L)/(NIR+RED+L)

where RED and NIR denote a red band and a near-infrared band of 
Landsat 8 OLI images, respectively; L is 0.5 for urban areas. 

The original values of the SAVI range from − 1.5 to 1.5. According to 
experts’ field experience and on-screen visual interpretation, we only 
used the cells with values > 0.6 to represent the vegetation area. The 
higher the SAVI value is, the denser the vegetation cover. 

3.1.3. Imperviousness 
Impervious surfaces, such as house roofs, parking lots and paved 

roads, refer to land cover types that prevent water filtration into soil 
(Arnold and Gibbons, 1996). Impervious surfaces not only indicate the 
process of urbanization but also describe anthropogenic features that 
affect the relevant environment. We extracted the imperviousness and 
used it to represent the influence of built-up areas on wetlands. 
Following Xu (2008), we calculated a built-up index (IBI) and extracted 
the imperviousness.   

where SWIR1, NIR, RED and GREEN are the middle infrared band, 
near infrared band, red band and green band of Landsat 8 OLI images, 
respectively. 

The original values of the IBI range from − 1.0 to 1.0. Similarly, by 

combining experts’ field experience with on-screen visual interpreta
tion, we designated those areas whose IBI values were greater than − 0.2 
as impervious surfaces. 

3.1.4. Road network 
Roads are commonly recognized as exerting cumulative negative 

effects on wildlife and their habitats. Road density is a common metric 
used to measure these effects (Weller et al., 2007). Some roads have 
been identified from remote sensing images using an indicator of 
imperviousness; however, because of the limitation of the low spatial 
resolution of these images, many roads still cannot be extracted as 
imperviousness. Therefore, we also derived road density indicator from 
road networks. To avoid double counting, roads should be subtracted 
from impervious surfaces before calculating the road density (Fernandez 
et al., 2019). In this paper, we used the extraction tool in ArcGIS10.3 to 
remove the parts of roads within impervious surfaces. 

Road network data were downloaded from OSM and classified into 
several levels (e.g., highway, primary, secondary, tertiary, cycleway, 
footway, and pedestrian) based on their relative importance. We inte
grated them into three classes (namely, primary, secondary, and others). 
Based on the ratios of the average traffic flow between them, 5, 3 and 1 
were assigned as their weights. 

3.1.5. POI 
POI data, which are provided voluntarily by individuals, often 

include transport facilities, educational institutes, government agencies, 
commercial services, residential buildings, companies, etc. Each point of 
POI contains the functional and locational properties of a linked site. POI 
data can link geographic locations to specific places, particular features, 
and other site-based information. Therefore, they are fundamental for 
their use as an important indicator of human disturbance, which is often 
used to generate urban land use and social functional mapping (Chen 
et al., 2018; Hu et al., 2016). 

The initial 20 classes of POIs captured from the Baidu maps were 
aggregated into 17 general categories. Table 2 presents the 17 categories 
of POIs and the counts for each category. The quality of the POI data was 
verified by checking 510 randomly sampled sites manually (i.e., 30 sites 
for each category, which are evenly distributed in the study area). The 
resulting accuracy level was 95%. Although spurious data may be 
included, the overall distribution pattern can be accurately represented 
by using a large number of sites. 

Considering that different categories are linked to different human 
activities and may have different impacts on wetland conditions, we 
implemented the idea of the landscape development intensity (LDI) 
index developed by Brown and Vivas (2005). The LDI is intended for use 
as an index of the human disturbance gradient because the intensity of 
human-dominated land uses may affect the biodiversity of adjacent 
wetlands through direct and/or indirect impacts. 

The metric for quantifying human activities was emergy use per unit 
area per time. It is measured as the solar emergy joule sej per ha per year 
and is calculated from nonrenewable energy sources, including elec
tricity, fuel, fertilizer, pesticide, and water applications (Brown and 

Vivas, 2005). The calculated emergy values are normalized as LDI co
efficients and range from 1 to 10 calculated as the normalized natural 
log of energy per area per time. The higher the LDI coefficient is, the 
greater the degree of human disturbance. Here, we assigned the weights 
for individual POI categories (see Table 2) based on the LDI coefficients 
used by Brown and Vivas (2005) and Chen and Lin (2013). 

Table 2 
Seventeen categories of POIs and the counts for each category. LDI coefficients 
were used as the weights for each category.  

ID Category Counts Classes used by Chen and 
Lin (2013) 

LDI 
coefficients 

1 Gasoline station 705 Gasoline station  8.07 
2 Auto service 8162 House for residence and 

business  
8.66 

3 Restaurant 41,079 Service industry  9.18 
4 Retail 142,490 Retail and wholesale 

stores  
8.00 

5 Entertainment 8280 Amusement place  6.92 
6 Hospital and clinic 8057 Hospital and health care 

facility  
8.07 

7 Hotel 5298 House for residence and 
business  

8.66 

8 Park 2704 Park (green yard)  1.83 
9 Residential 

community 
13,530 Residential house  6.79 

10 Government 
agency 

20,998 Governmental Building  8.07 

11 Education facility 7713 Elementary school/ 
middle school/other 
school  

8.07 

12 Public bike and 
park lots 

15,630 Road facility  8.28 

13 Bank and ATM 
facility 

6981 House for residence and 
business  

8.66 

14 Company 86,098 Manufacturing building  8.07 
15 Toll station and 

road facility 
466 Road facility  8.28 

16 Transport facility 29,614 Road facility  8.28 
17 Public toilet and 

kiosk 
3841 House for residence and 

other uses  
8.66  

IBI =
2SWIR1/(SWIR1 + NIR) − [NIR/(NIR + RED) + GREEN/(GREEN + SWIR1)]

2SWIR1/(SWIR1 + NIR) + [NIR/(NIR + RED) + GREEN/(GREEN + SWIR1)]
(3)   
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3.1.6. Spatial autocorrelation analysis 
Characteristics of the spatial distribution are commonly referred to 

as the spatial autocorrelation, which is measured by Moran’s index (I) 
and Geary’s index (Upton and Fingleton, 1985). Spatial autocorrelation 
can be divided into global spatial autocorrelation and local spatial 
autocorrelation, which can reveal the correlation of the attribute values 
between the spatial reference unit and its adjacent space unit. 

The global Moran’s I index was used to analyze the global spatial 
correlation of individual indicators in the study area and can be calcu
lated using the following equation (Moran, 1948): 

I(d)
[

1
W(d)

]

=

∑n
i = 1
i ∕= j

∑n
j = 1
j ∕= i

wij(d)(xi − x)(xj − x)

1
n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ (4) 

where wij(d) stands for the spatial contiguity weights matrix that 
indicates whether a pair of sampling locations are in distance class d; xi 
and xj are the values of variable x at sampling locations i and j; W(d) is 
the sum of wij(d), which is the number of pairs of sampling locations per 
distance class; and x is the mean of the corresponding attributes. 

Global Moran’s I index values range from − 1 to 1. Values > 0 indi
cate that the space is in positive autocorrelation. The greater the number 
is, the stronger the autocorrelation of the spatial distribution. 
Conversely, values < 0 indicate that the space has a negative autocor
relation. We calculated the global Moran’s I indexes for waterbodies, 
vegetated areas and imperviousness with different distance thresholds. 
From them, distance thresholds were set as appropriate bandwidths of 
individual indicators according to the decreasing trend of global Mor
an’s I indexes. 

Local spatial correlation is also known as the local indicator of spatial 
association (LISA), which can reveal local variation between the local 
spatial reference unit and its adjacent space unit. Local spatial correla
tion analysis mainly involves the local Moran’s Ii, which can be esti
mated as follows: 

Ii(d) =
(xi − x)

1
n

∑n
i=1(xi − x)2

∑n

j = 1
j ∕= i

wij(d)(xi − x) (5) 

where wij(d) is the spatial contiguity weights matrix given a local 
neighborhood search of radius d; the weights matrix can be actual 
weights (e.g., inverse distance weighting function) to emphasize the 
local neighborhood effect on local spatial pattern; xi is the values of 
variable × at sampling location i; and x is the mean of the corresponding 
attributes. 

A positive value for local Moran’s Ii indicates that a feature has 
neighboring features with similarly high or low attribute values. A 
negative value for local Moran’s Ii indicates that a feature has neigh
boring features with nonsimilar values. In this study, we used local 
Moran’s Ii to analyze the local spatial variation in wetland conditions. 

3.1.7. Kernel density estimation mapping 
To quantify the impacts of individual indicators on wetland condi

tions, we calculated the density of waterbodies, vegetation covers, 
imperviousness, roads and POI values using the kernel density estima
tion method (KDE) (Silverman, 1986). KDE can be used to generate the 
density of features in a neighborhood around those features. In the 
density map of features, the density value at each cell reveals the in
fluence received by a given location from such indicators. This density 
value takes into account both the distance (the closer a feature point is to 
the given location, the more influence the location receives from that 
feature point) and counts of the surrounding points (the more points 
near the given location there are, the more influence the location 
receives). 

The optimal distances, estimated by global Moran’s I indexes, were 
used as appropriate bandwidths in the KDE algorithm. Specifically, for 

POI, classes (LDI coefficients) were used as the population field when 
generating a density map with KDE. 

3.2. Knowledge-based raster mapping (KBRM) approach 

We derived five ecological indicators, namely, the density of 
waterbodies, vegetation covers, imperviousness, roads, and POI values. 
To integrate individual indicators into an overall score that can depict 
wetland conditions, we generated a knowledge-based raster mapping 
(KBRM) approach based on the wetland-environment model (Yang 
et al., 2016a). The model was used to make inferences about wetland 
conditions based on landscape-level data rather than directly relying on 
fieldwork. It consists of two steps: standardizing each ecological indi
cator and aggregating ecological indicators into the output overall score. 
Borrowed idea from Shi et al. (Shi et al., 2004, 2009), the model can be 
expressed as follows: 

Wij = PN
a=1(Eij,a) (6)  

Eij,a =

⎧
⎨

⎩

V1, if Zij,a < V1
Zij,a, if V1 ≤ Zij,a ≤ V2

V2, if Zij,a > V2

(7) 

where (i,j) is the location of the processed cell; Wij is an overall score 
of wetland condition at location (i,j), ranging from 0 (worst) to 1 (best); 
Eij,a and Zij,a are the normalized and original values of indicator a at (i,j), 
respectively; V1 and V2 are the lower and upper thresholds of the 
reasonable indicator value; and N is the total number of ecological 
indicators. 

For V1 and V2, the original value of each indicator follows a normal 
distribution, so we constructed a confidence interval with a 98% con
fidence level. The upper and lower bounds of the confidence interval 
were used as thresholds V1 and V2. Thus, some extreme values, those 
lower than the lower threshold V1 or greater than the upper threshold 
V2, can be excluded as outlier values. For E, we adopted a normalized 
function to standardize individual indicators ranging from 0 to 1. 
Additionally, assuming that waterbodies and vegetation have positive 
impacts on wetland conditions and imperviousness, roads and POI have 
negative impacts on wetland conditions, we conformed that the impacts 
of indicators on wetland conditions have a positive relationship by 
inverting values of imperviousness, roads and POI. For P, we used the 
weighted sum method to generate the final overall score for each cell 
location. 

The analytic hierarchy process (AHP) method (Saaty, 1980; Goepel, 
2013) was used to derive experts’ knowledge and determine the 
appropriate weights of individual indicators. The AHP is a structured 
process that organizes and analyzes complex decisions based on math
ematical functions. It eases the consideration of complex relationships 
among multiple indicators by providing only simple pairwise compari
sons from experts and then derives weight for each indicator through 
calculation over the score matrix established by the comparisons. Some 
scholars have introduced AHP into wetland assessments to compre
hensively evaluate wetland conditions (Chen et al., 2019). 

Five experts from the Wetland Protection Station of Suzhou, who are 
very familiar with wetlands in Suzhou, have worked on determining the 
weights of indicators by using AHP. First, they performed a pairwise 
comparison matrix for five indicators with paired relative importance 
ranks. Second, the importance ranking was calculated based on the filled 
comparison matrix, and an eigenvector was obtained by the square root 
method, which represented the order of importance of ecological in
dicators. Finally, to check the consistency of the experts’ pairwise scores, 
we calculated the consistency ratio and verified that it was less than or 
equal to 10%; otherwise, the pairwise comparison values were recal
culated to improve the indicators’ weighted consistency. Thus, the final 
weight of each indicator was the average of contributions from indi
vidual experts. All final weights were then normalized to sum to 1, 
which were 0.23, 0.18, 0.11, 0.13, and 0.35 for the waterbody, 
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vegetation, imperviousness, road, and POI indicators, respectively. 

3.3. Correlation between KBRM output and ecological indicators 

To obtain dominant indicators and examine the representation of 
wetland conditions generated by our method, the correlation between 
the KBRM output and the five indicators was analyzed. Considering that 
a bivariate normal distribution exists for the individual indicators, we 
calculated Pearson’s correlation coefficient and used it to measure the 
degree of correlation between the KBRM output and the five indicators 
(Choi et al., 2010). 

3.4. Wetland assessment 

To better understand the representation of wetland conditions, the 
overall score map was divided into five levels, representing bad, poor, 
moderate, good, and excellent. At present, in the traditional method of 
grading assessment results, the thresholds are determined in terms of the 
maximum, minimum, average and standard deviation or equal interval 
division of the results. They are normally determined subjectively with 
some uncertainties (Feng et al., 2020). In this paper, we employed the 
natural breaks (Jenks) algorithm to generate the gradation of five levels. 
The natural breaks (Jenks) algorithm seeks to reduce the variance within 
classes while maximizing the deviation from the means between classes 
(Jenks, 1967). Because of its high aggregated distribution and low di
versity, it can reflect the spatial distribution of and difference in wetland 
conditions and has a better performance than most of the other methods 
(Liu et al., 2019b). 

To measure numerical variations in individual wetlands, the average 
and standard deviation (std) of all cells within each wetland from the 
overall score map were calculated. We used the average value to 
represent the entire ecological condition of each wetland. We also used 
the std values to represent the interior variation of a wetland. 

To better understand the spatial distribution characteristics of 
wetland ecological conditions, a 600 m × 600 m grid was generated to 
resample the overall output map of the study area, and the local spatial 
correlation pattern was analyzed by using a local Moran’s Ii cluster map. 
Four types of significant autocorrelations could be found. High values 
surrounded by high neighboring values were designated as high-high 
(HH), low values surrounded by low neighboring values were desig
nated as low-low (LL), low values surrounded by high neighboring 
values were designated as low–high (LH), and high values surrounded 
by low neighboring values were designated as high-low (HL). 

3.5. Validation 

To evaluate the quality of wetland assessments derived from our 
method, we obtained water quality data from the Wetland Protection 
Station of Suzhou and used them to validate our method. These water 
quality data were collected at 15 sampling sites, most of which are 
located across various wetlands in Suzhou according to their accessi
bility and representativeness. These sampling sites are representative of 
the water quality and aquatic ecology of wetlands in Suzhou (Zhu et al., 
2019). 

The water quality samples were collected every two months in 2018 
and preserved as outlined in the relevant guidelines (Wilson and Bayley, 
2012). These samples were analyzed for 13 parameters of water quality, 
including water temperature (T), dissolved oxygen (DO), chemical ox
ygen demand (COD), total nitrogen (TN), nitrate nitrogen (NO3− -N), 
total phosphorus (TP), turbidity, suspended matter (TSS), pH, 
chlorophyll-a (Chl-a), and total organic carbon (TOC). Because the 
impact of nutrients on the wetland environment cannot be ignored, we 
finally used DO, T, TN, TOC, and TSS as the main parameters of water 
quality. 

The water quality index (WQI) was used to generate the overall 
outcome by integrating different parameters (Dobbie and Dail, 2013). 

The WQI is a common tool used for the quantitative assessment of water 
quality (Fox, 2014). It provides a summary of the entire water envi
ronment, which reflects the environmental characteristics of the study 
area. Using the WQI is easy for the public and policy makers to under
stand the complex conditions of an aquatic environment. 

The most common weighted aggregation method of WQI normally 
includes steps of selecting parameters, calculating subindexes, assigning 
weights and generating the WQI (Yan et al., 2015).  

(1) Selecting parameters 

In this paper, DO, T, TN, TOC, and TSS were selected as the main 
parameters of water quality. According to the Surface Water Environ
ment Quality Standard of China, water quality is divided into five cat
egories, which correspond to the criterion set of {Excellent, Good, Fair, 
Poor, Bad} (Chinese Environmental Protection Agency, 2002). Related 
to this criterion set, each indicator has standard guideline values for 
each of the five categories.  

(2) Calculating subindexes 

After five water quality parameters have been selected, parameters 
with different units and dimensions can be converted into subindexes 
with a common scale, which are frequently within the range of 0–100 
(Srebotnjak et al., 2012). In this paper, a simple linear interpolation 
function was used to calculate the subindexes (Uddin et al. 2021), which 
can be stretched from 0 to 100. A larger value of the subindex indicates a 
better water quality. 

Si = S1 −

[(

S1 − S2)

(
Xi − X1

X2 − X1

)]

(8)  

Si = S1 −

[(

S1 − S2)

(
X1 − Xi

X1 − X2

)]

(9) 

where Si is the subindex value for parameter i calculated for the 
observation value Xi; X1 and X2 are the maximum and minimum stan
dard guideline values for parameter i; and S1 and S2 are the maximum 
and minimum subindex values of X1 and X2 for parameter i. When the 
value of the observation parameter was higher than the upper guideline 
value, Eq. (8) was used. Otherwise, Eq. (9) was implemented.  

(3) Weighting parameters 

Normally, the weight of each parameter is estimated based on the 
relative importance of the water quality parameter. Some WQI methods 
use experts to implement the parameter weighting process (Sarkar and 
Abbasi, 2006). Here, we also used the AHP method to determine WQI 
weights for the water quality parameters. Each of the experts deter
mined the most appropriate weights for given parameters that reflect 
their influence on the overall water quality. All final weights were 0.24, 
0.15, 0.20, 0.22, and 0.19 for the DO, T, TN, TOC, and TSS parameters, 
respectively.  

(4) Aggregating WQI 

A simple additive aggregation function was used to calculate the 
WQI value, which is given as follows: 

z =
∑L

i=1
ωiSi (10) 

where z is the WQI value; ωi are weights of the individual indicators, 
which are derived by experts in the last step; and L is the total number of 
parameters. 

After generating the WQI value, we retrieved the score values of the 
assessment results at the same 15 sampling sites from the raster overall 
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score map, which was generated by our method. Then, Pearson’s cor
relation coefficients between the WQI values and score values of the 
assessment results were calculated. Thus, we used the WQI values of 
water quality to validate the overall score values of wetland conditions 
generated by our method. 

4. Results 

4.1. Ecological indicators and wetland condition mapping 

4.1.1. Global Moran’s I indexes 
The global Moran’s I indexes for waterbodies, vegetation covers and 

imperviousness were calculated using different distance thresholds. As 
shown in Fig. 3, the global Moran’s I indexes of all features decreased, 
and the p-value was close to 0 when the distance threshold increased. 
For imperviousness and vegetation, the decreasing trend of the global 
Moran’s I index became slow when the value of the distance threshold 
was >6 km. For waterbodies, their distribution and area were wider than 
those of imperviousness and vegetation coverage, so their global Mor
an’s I index values were greater than those of imperviousness and 
vegetation coverage. When the value of the distance threshold was 
>10 km, the decreasing trend of the global Moran’s I index of water
bodies became slow. That is, the optimal distances of spatial autocor
relations of waterbodies, vegetation covers and imperviousness were 
10 km, 6 km and 6 km, respectively. 

4.1.2. Density maps of indicators 
The density maps of indicators were calculated using the kernel 

density tool in ArcGIS 10.3 (Fig. 4(a)–(e)). The value range of each in
dicator varies across the whole study area can be seen here. 

4.1.3. Overall score mapping of wetland condition 
Overall score mapping of wetland conditions, which covered the 

whole boundary of Suzhou, was implemented using the KBRM approach 

(Fig. 5). The value of the overall score map ranged from 15.6 to 82.9, the 
mean was 61.5, and the standard deviation was 9.2. In general, cells 
with higher values were found in urban regions, while cells with lower 
values were observed in lake or forest regions. 

4.1.4. Correlation between KBRM output and ecological indicators 
We calculated the correlation between the KBRM output and five 

indicators, which is given in Fig. 6. The KBRM output has a strong 
correlation with waterbodies and imperviousness, and their values of 
correlation are 0.85 and − 0.87, respectively. 

Among the five indicators, the correlation between waterbodies and 
imperviousness is strong, and the value of the correlation is − 0.73. No 
other pair of indicators has such a strong correlation. This demonstrated 
that the selection of these indicators is reasonable. There is no heavy 
multicollinearity among these indicators. 

4.2. Wetland assessment 

4.2.1. Five-level output of assessment 
Fig. 7. shows the five-level output of wetland conditions, which is 

generated by using the natural breaks (Jenks) algorithm. The pro
portions of bad, poor, moderate, good, and excellent cases are 3.7%, 
25.0%, 34.6%, 21.9%, and 14.8%, respectively (Table 3). For Yang
chenghu wetland (13), Taihu Lakeshore Wetland Park (26), and Chen
ghu wetland (27), most cells within them are classified as excellect level. 

4.2.2. Numerical variations of individual wetlands 
Numerical variations in individual wetlands are shown in Fig. 8. 

Based on the average value of each wetland, 9 wetlands fall within the 
excellent category, while 2 wetlands fit into the poor or bad category. 
The three wetlands with the highest average values (best condition) are 
the Manshan Island Wetland (22), Taihu Sanshandao Wetland Park (47), 
and East Taihu Lake Wetland (48), with scores of 82.5, 81.6 and 81.4, 
respectively. The three wetlands with the lowest (worst condition) 

Fig. 3. Global Moran’s I indexes for waterbodies, vegetation covers and imperviousness with different distance thresholds. When the distance thresholds increased, 
the global Moran’s I indexes of all features decreased. 
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average values are Xianzidou (58), Jiyang Lake Wetland Park (1), and 
Hetangyuese Wetland Park (17), with scores of 51.9, 53.6 and 57.7, 
respectively. 

Additionally, the three wetlands with the highest std values of 3.9, 
3.7, and 3.7 (i.e., South Yangchegnhu (15), Shanghu (3), and Kun
chenghu (6)) are surrounded by various environmental types. The three 
wetlands with the lowest std values of 0.2 (i.e., Manshan Island Wetland 
(22), Zhangwandang Wetland Park (52), and Gongshan Island Wetland 
(16)) have little interior variation. 

4.2.3. Spatial variations of overall wetlands 
Spatial variations across all of the wetlands are shown in Fig. 9. The 

HH region is mostly located in the dense open water and vegetation 
region. This region has large lakes and forests and experiences slight 
human disturbance. Comparably, the LL region is mainly concentrated 
in dense urban regions. This region is affected by heavy human distur
bance. Additionally, the HL region is mainly situated in hills surrounded 
by urban areas. The HL region is located in the transitional area of 
landscape types. 

4.3. Validation 

Pearson’s correlation between the overall score values and WQI 
values of water quality is shown in Fig. 10. As we can see, Pearson’s 

r = 0.831 at p < 0.001. 

5. Discussion 

We proposed a KBRM-based framework for wetland assessment. As a 
case study, we implemented this framework in the assessment of wet
lands in Suzhou, China. The findings of this study can be summarized as 
follows: 

The KBRM-based framework is an efficient and effective way to 
assess wetland ecological conditions. It is open and flexible to incorpo
rating different types of data to adapt to different regions. It is good at 
encompassing the advantages of increasingly available remote sensing 
images (e.g., Landsat and Sentinel) and open social data (e.g., OSM and 
POI). In this way, it can be easily adapted to meet the needs of different 
management practices or different study areas. In particular, it is very 
useful when field sampling is expensive and wetland regions are large or 
inaccessible. 

The lack of field data remained a challenge in wetland assessment in 
Suzhou. Zhu et al. (2019) developed a microbial community–based 
index of biotic integrity to evaluate the health of 15 wetland sites in 
Suzhou. Yang et al. (2016a) and Yang et al. (2016b) used landscape- 
scale indicators to carry out wetland assessments in the central urban 
region of Suzhou. In this study, for the first time, the entire adminis
trative boundary of Suzhou was used as a study area, and the ecological 

Fig. 4. Density maps of the ecological indicators calculated using the kernel density tool. (a) Density map of the waterbodies, (b) vegetation covers, (c) impervi
ousness, (d) roads, and (e) POI values. 
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conditions of 58 wetlands or wetland parks were assessed using remote 
sensing images and POI data. 

Due to many ecological indicators potentially affecting wetland 
conditions, the dominant indicator of wetland conditions is still debat
able. The results showed that a correlation exists between the KBRM 
output and each indicator. As expected, the density of waterbodies is a 
positive indicator, a higher value of which implies better wetland 
ecological conditions. The density of imperviousness, roads, and POI 
values are major negative indicators, which reflect poor wetland con
ditions when high. By combining positive and negative indicators, 
ecological integrity can be represented in the KBRM output. We find that 
the density of the waterbodies and density of imperviousness have the 
highest positive and negative correlations with the KBRM output. This 
result also highlights the importance of waterbodies and imperviousness 
as reliable indicators for wetland assessment, which was consistent with 
some earlier studies (Chen et al., 2019; Fernandez et al., 2019; Yang 
et al., 2016a). Additionally, the correlation between KBRM output and 
POI is − 0.65, which indicates that POI can represent more details and 
obtain a finer scale effect on wetland conditions. However, the density of 
vegetation is a minor negative indicator in our study, which is incon
sistent with our assumption and the results of other studies (Xu et al., 
2018; Langan et al., 2019). This matter requires further research. 

Considering that field measurements of wetlands in Suzhou are still 
limited, the ecological indicators for wetland assessment used in this 
framework have limitations. In the future, with the introduction of more 
spatial information technologies and data, more effective indicators will 
be introduced to improve the applicability and operability of this 
framework. 

The ecological conditions of wetlands can be spatially distinguished 
and represented in detail. The natural breaks (Jenks) algorithm-based 
five-level output map makes the result more visually interpretable and 
meaningful in wetland assessment. Obvious numerical and spatial 

Fig. 5. Overall score mapping of wetland conditions generated using the 
KBRM approach. 

Fig. 6. Correlation analysis of the KBRM output and the five indicators.  
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variations in wetlands exist between the 58 wetlands in Suzhou. As 
expected, most of the wetlands with the best ecological conditions were 
located close to large lakes or far away from urban regions. For example, 
the Manshan Island Wetland (22), Taihu Sanshandao Wetland Park (47), 
and East Taihu Lake Wetland (48) have the best ecological conditions. 
They are not only relatively far away from urban areas but also sur
rounded by large open water areas. In contrast, most of the wetlands 
with the worst ecological conditions were closely associated with urban 
regions. They are facing severe problems, including strong human 

disturbances and vegetation degradation patterns. For example, the 
Xianzidou Wetland (58), Jiyang Lake Wetland Park (1), and Hetan
gyuese Wetland Park (17) exhibit the worst ecological conditions. They 
are all recreational wetland parks surrounded by large urban areas. This 
indicates that urbanization and open waterbodies were the main con
tributors to wetland conditions. This finding can be supported by other 
studies (Bastami, et al., 2015; Alyssa et al., 2013). In addition, the 
wetlands with the highest std values, which have great interior varia
tion, are typically surrounded by various land cover and POI types. The 

Fig. 7. Five-level output of assessment generated by the natural breaks (Jenks) algorithm and locations of validation points.  

Table 3 
Five levels of overall score map with value range, counts, area and area proportion.  

Level Value range Counts Area (km2) Area % 

Excellent 72.2–82.9 1,194,683  1075.2  14.8 
Good 63.0–72.1 1,760,258  1584.2  21.9 
Moderate 56.1–62.9 2,788,412  2509.6  34.6 
Poor 47.1–56.0 2,011,462  1810.3  25.0 
Bad 15.6–47.0 296,047  266.4  3.7  
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wetlands with the lowest std values, which have little interior variation, 
consist of simple land cover and POI types. This demonstrates that 
different parts of a wetland may be subject to a variety of stressors and 
influences, resulting in varying interior ecological conditions. This 
finding shows that our method not only provides an overall assessment 
of the entire wetland but also identifies interior variation within a 
certain wetland. 

To validate the efficiency of the ecological condition assessment 
results, cross validation was conducted using the water quality assess
ment method, which is a detailed site-specific assessment method. We 
compared the overall score values and WQI values of water quality at 15 
field sampling sites in Suzhou. The validation demonstrates that the 

results from the two methods are strongly correlated (Pearson’s 
r = 0.831, p < 0.001). This result confirms that there is a strong corre
lation between our method and the WQI method. This means that the 
assessment result of our study is consistent with the water quality 
sampling result. This finding indicates that our method could provide a 
convenient and cost-effective approach to map and assess the ecological 
condition of wetlands. 

Although our framework has the advantage of deriving and integrating 
various indicators from different kinds of original spatial data, some tasks 
still need to be achieved in future research. First, more useful expert 
knowledge could be derived and applied to our KBRM approach. Ac
cording to expert knowledge, more appropriate indicators can be selected, 

Table A1 
The inventory of 58 wetlands in Suzhou with their assessment scores and area.  

ID Name Counts Area (km2) Min Max Mean STD 

1 Jiyang Lake Wetland Park 2466  2.219  48.0  57.3  53.6  2.3 
2 Yangtze Riverside Wetland 8557  7.701  62.3  74.3  67.7  3.1 
3 Shanghu 7487  6.738  50.0  70.0  66.5  3.7 
4 Nicanglou Wetland Park 1389  1.250  56.6  61.7  58.8  1.4 
5 South Lake Wetland Park 4688  4.219  60.8  66.6  64.8  1.4 
6 Kunchenghu 15,659  14.093  53.4  72.1  68.3  3.7 
7 Shajiabang Wetland Park 4651  4.186  63.5  66.8  65.6  0.7 
8 Jincang Lake Wetland Park 3543  3.189  58.5  65.3  62.9  1.4 
9 Caohu 9494  8.545  60.8  69.4  67.3  1.7 
10 Bachenghu 1365  1.229  59.9  66.4  64.1  1.2 
11 Shenzhedang 4256  3.830  64.7  70.9  69.1  1.4 
12 Manlihu 1262  1.136  60.4  68.6  63.8  2.1 
13 Yangchenghu 122,048  109.843  57.6  79.8  74.4  3.5 
14 Kuileihu 7428  6.685  62.6  73.7  69.5  2.7 
15 South Yangchegnhu 8509  7.658  62.3  77.8  72.1  3.9 
16 Gongshan Island Wetland 3127  2.814  79.0  79.9  79.6  0.2 
17 Hetangyuese Wetland Park 7758  6.982  52.1  60.9  57.7  2.3 
18 Tianfu Wetland Park 8594  7.735  54.4  59.1  57.8  0.8 
19 Taihu Lake Wetland Park 2560  2.304  67.8  72.1  70.1  1.1 
20 Jingjihu 7528  6.775  58.2  66.8  63.8  2.0 
21 Dushuhu 10,328  9.295  55.1  68.8  65.7  2.1 
22 Manshan Island Wetland 3020  2.718  81.9  82.7  82.5  0.2 
23 Shangyanghu 2427  2.184  63.1  66.5  65.7  0.7 
24 Yinshanhu 1851  1.666  55.4  61.1  59.3  1.5 
25 Huoditan 1878  1.690  58.8  61.7  60.8  0.6 
26 Taihu Lakeshore Wetland Park 7897  7.107  68.8  80.4  76.0  3.2 
27 Chenghu 44,176  39.758  64.4  78.1  74.1  2.4 
28 Bailianhu 3240  2.916  64.7  68.4  67.5  0.9 
29 Huangnidou 4471  4.024  64.5  73.8  70.1  2.0 
30 Jiulihu 2536  2.282  66.0  68.1  67.3  0.5 
31 Jinxi Wetland Park 7022  6.320  62.3  65.4  64.1  0.7 
32 Muzhanghu 2399  2.159  64.6  69.7  67.2  1.2 
33 Qixinlanyue Wetland Park 3196  2.876  68.5  75.0  72.5  1.3 
34 Tongli Wetland Park 5695  5.126  65.6  72.2  69.6  1.3 
35 Tonglihu 3363  3.027  59.6  67.7  65.8  1.5 
36 Dianshanhu 14,530  13.077  61.9  70.5  67.7  2.0 
37 Nanxinhu 5853  5.268  62.9  71.6  68.1  2.4 
38 Baixianhu 8179  7.361  63.5  70.1  68.3  1.4 
39 Shitoutan 3103  2.793  67.9  71.3  70.4  0.7 
40 Sunjiadang 1302  1.172  64.7  67.8  66.4  0.8 
41 Nanshenyang 1464  1.318  69.8  70.9  70.5  0.3 
42 Yuandang 10,935  9.842  62.1  68.1  66.4  1.3 
43 Sanbaidang 7200  6.480  59.3  66.6  64.0  1.8 
44 Taihu oasis Wetland Park 10,085  9.077  67.9  79.0  74.4  2.9 
45 Changqidang 1956  1.760  60.0  67.5  64.8  2.1 
46 Zhangyadang 2300  2.070  61.1  66.4  64.9  1.1 
47 Taihu Sanshandao Wetland Park 8408  7.567  80.6  82.3  81.6  0.5 
48 East Taihu Lake Wetland 6192  5.573  76.9  82.9  81.4  1.4 
49 Changdang 1683  1.515  64.5  67.8  66.4  0.8 
50 Yuanlangdang 2055  1.850  61.1  63.6  63.0  0.5 
51 Dalonghu 2222  2.000  60.3  66.6  63.8  1.7 
52 Zhangwandang Wetland Park 2784  2.506  62.0  62.8  62.4  0.2 
53 Yingdouhu 2215  1.994  56.5  61.6  58.6  1.1 
54 Changyang 7813  7.032  65.5  70.8  69.2  1.3 
55 Zhuangxiyang 1557  1.401  64.8  68.5  67.0  0.8 
56 Beimayang 10,881  9.793  66.1  71.4  69.9  0.8 
57 Jingyudang 4009  3.608  61.5  65.6  63.9  1.0 
58 Xianzidou 1326  1.193  44.8  56.0  51.9  2.6  

Z. Yang et al.                                                                                                                                                                                                                                    



Ecological Indicators 127 (2021) 107485

13

and more suitable weights can be assigned to each indicator. This may 
improve the assessment accuracy of our study and extend this framework 
globally as well. Second, other than its applications to lacustrine wetlands, 
this KBRM approach needs to be widely implemented in other kinds of 
wetlands, such as swamp wetlands, to make it more generalized. 

6. Conclusions 

Based on remote sensing images and open social data, an easy and 
effective accessible framework for wetland assessment was developed. 
We proposed five indicators derived from open waterbodies, vegetation 
covers, imperviousness, road networks and POI values that were prac
tical, cost-effective, and ecologically meaningful in measuring the 
ecological condition of wetlands. The KBRM approach was used to 
integrate these indicators and map ecological conditions. Our method 
has the advantage of convenient data collection, wide-region coverage, 
low cost, and spatial variation demonstration. It is not a substitute for 
the more detailed field assessment methods, but it can provide the op
portunity to monitor and assess areas inaccessible by foot. In this way, it 
can be used to evaluate more wetlands than other field-based methods. 
Practitioners can easily use this framework to improve wetland research, 
restoration, and management. 

The validation between our method and the water quality sampling 
method indicated that our method was reasonable and effective. It was 
possible to evaluate spatial variations in ecological conditions and 
provide solid support for policy-making in support of wetland protection 
and management. In the future, this method could be widely applied to 
different kinds of wetlands to make wetland protection and management 
more efficient and effective. 
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Fig. 8. Numerical variations of the 58 wetlands. Blue points, red points and green squares show the maximum, minimum, and average values of individual wetlands, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Local Moran’s Ii cluster map. HH indicates high values surrounded by 
high neighboring values; LL indicates low values surrounded by low neigh
boring values; LH indicates low values surrounded by high neighboring values; 
and HL indicates high values surrounded by low neighboring values. 
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