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A B S T R A C T   

Global-scale conservation initiatives and policy instruments rely on ecosystem indicators to track progress to-
wards targets and objectives. A deeper understanding of indicator interrelationships would benefit these efforts 
and help characterize ecosystem status. We study interrelationships among 34 indicators for mangroves, salt-
marsh, and seagrass ecosystems, and develop data-driven, spatially explicit typologies of coastal wetland status 
at a global scale. After accounting for environmental covariates and gap-filling missing data, we obtained two 
levels of clustering at 5 and 18 typologies, providing outputs at different scales for different end users. We 
generated 2,845 cells (1◦ (lat) × 1◦ (long)) globally, of which 29.7% were characterized by high land- and 
marine-based impacts and a high proportion of threatened species, 13.5% by high climate-based impacts, and 
9.6% were refuges with lower impacts, high fish density and a low proportion of threatened species. We identify 
instances where specific actions could have positive outcomes for coastal wetlands across regions facing similar 
issues. For example, land- and marine-based threats to coastal wetlands were associated with ecological structure 
and function indicators, suggesting that reducing these threats may reduce habitat degradation and threats to 
species persistence. However, several interdimensional relationships might be affected by temporal or spatial 
mismatches in data. Weak relationships mean that global biodiversity maps that categorize areas by single in-
dicators (such as threats or trends in habitat size) may not be representative of changes in other indicators (e.g., 
ecosystem function). By simplifying the complex global mosaic of coastal wetland status and identifying regions 
with similar issues that could benefit from knowledge exchange across national boundaries, we help set the scene 
for globally and regionally coordinated conservation.   

1. Introduction 

The natural world is under enormous pressure from human activities 
(Newbold et al., 2016; Mammides 2020), with coastal zones at the 

interface of marine and terrestrial environments at considerable risk (He 
and Silliman 2019). There is an urgent need to limit and reverse habitat 
loss and degradation to enhance biodiversity, safeguard human liveli-
hoods, slow climate change, and to define pathways to ocean sustainable 
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development (Díaz et al., 2019). Large-scale initiatives and international 
policy instruments have been developed to help achieve these aspira-
tions, such as the RAMSAR Convention on Wetlands, the UN Decade of 
Ecosystem Restoration, the UN Decade of Ocean Science for Sustainable 
Development, and the Convention on Biological Diversity’s (CBD) Post- 
2020 Global Biodiversity Framework and Sustainable Development 
Goals (SDG) (Leal Filho et al., 2018; Davidson et al., 2019; CBD 2020; 
UN 2020). Nested within the SDGs are targets that provide tangible 
aspirations that will help achieve each goal, and indicators that track 
progress towards achieving targets (Waldron et al., 2013; Watson et al., 
2020). The targets are interrelated, such that conservation actions that 
make progress on one are also likely to advance others. Expanding the 
protected area network, for instance, can also prevent the extinction of 
imperiled species, and enhance ecosystem services through reducing 
pollution (Kearney et al., 2018; Lindenmayer et al., 2018). 

Opportunities to progress multiple interrelated targets should be 
reflected as the existence of underlying relationships among the in-
dicators used to evaluate ecosystem status. But investigations into in-
terrelationships at the global scale are lacking. Quantifying 
interrelationships – for example among indicators of pressures (e.g., 
fishing), ecological functions (e.g., fish productivity) and habitat loss – is 
thus an important step in identifying opportunities for conservation 
actions to have benefits for improving multiple targets. Existing indices 
of ecosystem status often assume these causal relationships exist (e.g., 
wilderness areas; Jones et al., 2018) or infer them from expert opinion 
(e.g., the Ocean Health Index (OHI); Halpern et al., 2007; Halpern et al., 
2012). This is not a criticism of these well-designed and fit-for-purpose 
indices, but we acknowledge that intuitive causal relationships may not 
exist across large spatial scales, potentially affecting the conclusions 
drawn. For instance, the loss of mangrove forests is only weakly asso-
ciated with cumulative impacts, and the effects of pressures vary by 
national governance (Turschwell et al., 2020). Relationships among 
different groups of cumulative impacts (i.e., a consequence of multiple 
pressures) can also be weak at the global scale (e.g., climate change and 
pollution from difuse sources; Bowler et al., 2020). Studying in-
terrelationships among a diverse suite of ecological indicators can 
confirm the validity of methods that assume indicator relationships, 
evaluate expert opinion used to quantify these relationships, be used to 
develop spatially explicit typologies of condition (sensu bio-
regionalizations; Mackey et al., 2008; Woolley et al., 2020), and help set 
the scene for coordinated conservation actions that share information 
across regions facing similar issues. 

Vegetated coastal wetlands – mangroves, saltmarsh, and seagrass – 
provide a valuable framework for exploring interrelationships among 
global indicators and identifying typologies to inform globally coordi-
nated conservation actions. Coastal wetlands provide multiple 
ecosystem services, including protecting coastlines from storms 
(Menéndez et al., 2020), reducing the amount of pollutants entering the 
marine environment (Adame et al., 2019), sequestering large amounts of 
carbon, contributing to climate change mitigation (Duarte et al., 2013), 
and providing critical habitat for wildlife, including fisheries species and 
endangered megafauna (Carrasquilla-Henao and Juanes, 2017; Sievers 
et al., 2019; Unsworth et al., 2019b). Despite this, coastal wetlands have 
experienced global declines in extent and condition (Waycott et al., 
2009; Davidson 2014; Gu et al., 2018), and are susceptible to cumulative 
land, marine and climate pressures, such as sea-level rise and eutro-
phication (Cloern et al., 2016; Schuerch et al., 2018; He and Silliman 
2019; Tulloch et al., 2020). Coastal wetlands are also under-represented 
in global monitoring programs and indices of status and trends (Milo-
slavich et al., 2018; Brown et al., 2021), and receive less conservation 
funding than other coastal habitats, such as coral reefs (Duarte et al., 
2008; Unsworth et al., 2019a). Increased awareness of these issues has 
spurred calls to enhance coastal wetland conservation action at the 
global scale (Cullen-Unsworth and Unsworth 2018; Friess et al., 2019; 
de los Santos et al., 2020). Several wetland indicators track change in 
individual ecosystem components (e.g., habitat extent change or animal 

population size; Loh et al., 2005; Darrah et al., 2019) and a suite of 
globally-applicable datasets now exist for coastal wetland status in-
dicators (Worthington et al., 2020). 

Globally and regionally coordinated conservation would benefit 
from a deeper understanding of the interrelationships among key in-
dicators of ecosystem status that are widely used to track progress to-
wards various objectives and targets. Using coastal wetland ecosystems, 
we aimed to: (1) quantify interrelationships among 34 indicators 
relating to habitat extent change, ecological structure and function, and 
cumulative impacts for coastal wetlands globally, and (2) define com-
binations of indicator values that characterize relative status in different 
coastal wetland areas, or ‘spatially explicit typologies’. Typologies thus 
reflect ecosystem status based on our indicators of interest (not de-
lineations of global wetland types or distributions) and can inform co-
ordinated conservation actions across regions facing similar issues. 

2. Materials and methods 

We explored interrelationships among ecosystem indicators of 
coastal wetlands and identified typologies of condition through nine key 
steps (Fig. 1). Our approach brings together ideas and concepts across 
disciplines, such as analyzing socio-ecological patterns of vulnerability 
(Kok et al., 2016), spatial correlations of global pressures (Bowler et al., 
2020), and data-driven bioregionalizations (Woolley et al., 2020). 

2.1. Indicator selection 

We selected indicators based upon a review of relevant literature, 
existing indices, conceptual models of ecosystem processes, and data 
availability for mangrove, saltmarsh, and seagrass ecosystems. What we 
refer to as indicators, could also be considered measures, metrics, or in-
dexes, however, we do not make this distinction and used indicators 
throughout. We compiled indicators that described ecosystem status 
under three thematic dimensions: habitat extent change (changes in the 
areal extent of the habitats), ecological structure and function (biotic 
indicators relating to the ecology of the ecosystem), and pressures 
(‘cumulative impacts’ based on Halpern et al., 2019) (see Table 1). We 
selected indicators which had globally, or near-globally, comprehensive 
datasets for a total of 34 ecosystem-specific indicators (Table 1; for full 
description, see Appendix A). Our modelling approach is not hindered 

Fig. 1. Flow diagram of the nine key methodological steps used to map and 
diagnose spatially explicit typologies of coastal wetland ecosystem condition 
applicable at a global scale. 
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by the inclusion of correlated indicators; in fact, these enhance capacity 
to accurately gap-fill missing data and help identify spatially explicit 
typologies. 

In addition to indicators that describe status, we also collated data on 
variables that describe site characteristics (hereafter “covariates”; 
Table 1). These covariates naturally influence some of the indicators, 
such as tidal range and sea-surface temperature. Their inclusion means 
we could remove variation in indicators that were hypothesized to be 
due to environmental variation or the size of habitats. Therefore, the 
diagnoses of coastal wetland condition more closely reflect human in-
fluences. For those indicators hypothesized to be influenced by the 
covariates, we included seven covariates in the statistical model 
(Table 1; also see ‘Statistical analysis’). We did not apply covariates to all 
indicators. If we include covariates in the responses of indicators that we 
do not expect them to explain, we risk removing variability due to 
spurious correlations. 

2.2. Grid cells and variable measurement 

We generated a grid of 1◦ (lat) × 1◦ (long) polygon cells (̴ 100 × 100 
km at the equator), that included the distribution of mangrove, seagrass, 
and saltmarsh vegetation extent. To do this, the grid was spatially joined 
with vector shapefiles of the extent of mangrove (overall accuracy of 
94.0%; Bunting et al., 2018), seagrass (UNEP-WCMC, 2017) and salt-
marsh (Mcowen et al., 2017), and filtered to exclude polygons and 
points where these habitats were missing, resulting in 2,845 grid cells. 
We acknowledge the saltmarsh and seagrass layers are not always ac-
curate at the local scale. However, the spatial resolution of our analysis 
accommodates the coarseness of the global data sets and are suitable for 
the global overview and proof of concept of our analyses. 

We calculated the mean value for each indicator and covariate with 
globally comprehensive datasets, except for fragmentation indicators 
which were measured at the landscape level (i.e., each grid cell is the 
landscape boundary for which fragmentation is estimated; see Appendix 
A for a full description of indicator processing). For indicators that were 
not globally comprehensive (e.g., seagrass extent loss), we calculated 
mean values only for cells where data existed. Missing data due to the 
lack of congruence between habitat distribution and indicator data was 
rare (see Appendix A for full documentation of missing data for each 
indicator). We did not undertake any gap-filling of missing data prior to 
analysis because our statistical approach imputes missing data based on 
correlations amongst indicators to gap-fill during analysis. We used 
multivariate imputation with chained equations (MICE) to estimate 
plausible values when cells had missing data for covariates (Appendix 
B). 

Cumulative impacts to mangrove, saltmarsh and seagrass habitats 
were calculated from 14 global pressure layers from (Halpern et al., 
2019) (1 km2 resolution; Appendix C). We rasterized spatial data layers 
(vector; polygon) mapping each habitat’s global distribution to 1 km2 

resolution (hereafter referred to as “habitat extent” rasters). To quantify 
the impact of individual pressures to each habitat, pressure rasters (re- 
scaled from 0 to 1, Appendix A) were multiplied by habitat extent rasters 
and a value representing the vulnerability of each habitat to each 
pressure (Halpern et al., 2019). The pressure impact rasters were then 
summed within driver origin (land- (n = 3), marine- (n = 8), or climate- 
based (n = 3); Tulloch et al., 2020) to obtain cumulative pressure impact 
rasters for each habitat-driver combination for each habitat (hereafter, 
cumulative impacts) and averaged to obtain a value for each grid cell in 
the years 2003 and 2013 (Appendix C). Values from 2013 were 
considered current cumulative impacts and change in cumulative 

Table 1 
Indicators used to define typologies, nested under the three thematic dimensions (extent change, ecological structure and function, and cumulative impacts). Asterisks 
(*) indicate the covariates that were applied to that indicator, (c) is current status, (r) is instantaneous rate of change, temporal periods for datasets are provided in 
parentheses, and † indicates the use of a composite dataset composed of data sources from several years. For full description of indicators and their processing, see 
Appendix A  

Habitat Thematic dimension Co-variates  
Extent change Ecological structure and function Cumulative 

impacts  

Mangroves Mangrove loss rate 
(2000–2012) 

Proportion of threatened mangrove affiliated species (animals & 
plants) (accessed 2020) 

Climate (c; 2013) Mean annual sea surface temperature 
(2019; ◦C)   

Land (c; 2013) Mean photosynthetically active 
radiation (2018)   

Threat score of mangrove affiliated species (animals & plants) 
(accessed 2020) 

Marine (c; 2013) Mean annual rainfall (2019; cm)   
Climate (r; 
2003–2013) 

Mean annual air temperature (2019; 
◦Kelvin)   

Fragmentation: mean patch area (c; 2012) Land (r; 2003–2013) Mean annual tidal amplitude (2019; m)   
Fragmentation: mean patch area (r; 2000–2012)* Marine (r; 

2003–2013) 
Coastline length (km)   

Forest longevity (1996–2016)  Mangrove extent (km2; 2010)   
Mangrove height (2009)*     
Above-ground biomass (2009)*     
Total soil carbon (2000)*     
Fish density*†
Invertebrate density*†

Saltmarsh  Proportion of threatened saltmarsh affiliated species (animals & 
plants) (accessed 2020) 

Climate (c; 2013)    
Land (c; 2013)    

Threat score of saltmarsh affiliated species (animals & plants) 
(accessed 2020) 

Marine (c; 2013)    
Climate (r; 
2003–2013)     
Land (r; 2003–2013)     
Marine (r; 
2003–2013)  

Seagrass Seagrass loss rate† Proportion of threatened seagrass affiliated species (animals & 
plants) (accessed 2020) 

Climate (c; 2013)    
Land (c; 2013)    

Threat score of seagrass affiliated species (animals & plants) 
(accessed 2020) 

Marine (c; 2013)    
Climate (r; 
2003–2013)     
Land (r; 2003–2013)     
Marine (r; 
2003–2013)   
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impacts was calculated as the instantaneous rate of change between 
2003 and 2013. 

Spatial data layers for mangrove and saltmarsh pressure indicators 
required additional processing (without doing so, 88% of mangroves 
and 85% of saltmarsh would not have corresponding data). In brief, we 
processed the global pressure data (Halpern et al., 2019) to extend 
landwards, so cumulative impacts could be quantified for all habitat 
extent. To assess and map cumulative impacts to these intertidal areas, 
we first calculated average pressure impacts at river mouths and then 
assigned river mouth pressure impacts to mangroves and saltmarshes in 
corresponding upstream basins (see Appendix C). Although direct im-
pacts from some of these pressures might not be expected in intertidal 
areas (e.g., from fishing), indirect effects to the ecosystem from them are 
possible (e.g., water quality and trophic cascades). 

Spatial processing and indicator measurement were conducted in 
ArcGIS Pro (v 2.5.0, ESRI Inc.) using the Geostatistical Analyst toolbox, 
or R (v 3.6.1, R Development Core Team, 2017) using the spatial 
packages ‘raster’ (Hijmans 2019), ‘sp’ (Pebesma and Bivand 2005; 
Bivand et al., 2013), and ‘sf’ (Pebesma 2016). Multivariate imputation 
was performed using the R package ‘mice’ (Van Buuren and Groothuis- 
Oudshoorn 2011). 

2.3. Statistical analysis 

2.3.1. Residual indicator values 
We modelled relationships among indicators with a latent variable 

model (LVM). We use a Bayesian LVM framework due to several ad-
vantages. First, it enabled us to model the effects of covariates on in-
dicators. The LVM models covariation in indicators due to natural 
environmental gradients and separates that from residual covariation 
among indicators that is not explained by the covariates. This residual 
covariation is of primary interest because it could be due to human in-
fluences. Second, Bayesian LVMs can model missing data by predicting 
missing indicator values based on the strength of their correlations with 
other indicators. Third, Bayesian LVMs can model different indicator 
types simultaneously, including continuous, proportional, and categor-
ical data. The model was specified with the following equation (1) (Hui 
2016): 

log(μij) =θ0j + xT
i βj + zT

i θj (1)  

where µij is the mean response at cell i for indicator j, θ0j is the indicator- 
specific intercept, xi and zi are vectors of the covariates (where used) and 
LVs (respectively), and βj and θj are their corresponding indicator- 
specific coefficients (Hui 2016). We estimated coefficients for each in-
dicator from likelihoods appropriate to their distribution with Markov 
Chain Monte Carlo (MCMC) sampling (Hui 2016); a normal distribution 
(with identity link) for continuous response variables, and a beta dis-
tribution (with logit link) for proportions. To obtain the residual indi-
cator values at each cell, we multiplied the matrix of indicator 
coefficients for each LV by the matrix of cell LV scores. 

We set the length of each MCMC chain to 20,000, discarded 1,000 in 
the burn-in period, and used a thinning rate of 2. We used weakly 
informative normal priors (mean = 0 and variance = 10) for MCMC 
estimation of variable coefficients (Hui 2018) and did not include site 
effects. We explored the results of a range of LVs (from 2 to 30) and 
found that higher LV models produced more compact and separated 
clusters (i.e., typologies). Given the high dimensionality of our dataset 
(34 indicators and 2,845 cells), we chose to include the maximum 
number of LVs that was computationally feasible (17 LVs). The use of 17 
LVs, rather than just 2–3 LVs typical of most ordinations, means that we 
could capture the strongest correlations and the subtle patterns. 

We log-transformed variables in the LVM where necessary to meet 
assumptions of normality and homogeneity of variance, and standard-
ized (z-score standardization, mean = 0, standard deviation = 1) co-
variate and response variables (excluding proportions). We verified 

MCMC chain convergence by visually inspecting trace plots and calcu-
lating Geweke convergence diagnostics after adjusting for multiple 
comparisons (Geweke 1992). We also visually inspected autocorrelation 
plots and used Dunn-Smyth residuals to check model assumptions (Ap-
pendix D; Dunn and Smyth 1996). We fit the LV model using the R- 
package ‘boral’ version 1.81 (Bayesian ordination and regression anal-
ysis; Hui 2016; Hui 2018). 

2.3.2. Quantifying indicator correlations 
Correlations among variables will determine the typologies detected 

by the clustering algorithms clusters. Where correlations represent an 
ecological interrelationship, they also suggest opportunities for conser-
vation to simultaneously enhance multiple indicators. We estimated 
‘residual correlations’ from the LVM, which are ‘residual correlations’ 
left-over, after accounting for spatial covariation in indicator values that 
represent covariance left-over after explaining for the covariates (Hui 
2016). 

The large number of potential correlations increases the risk of 
falsely identifying correlations as real interrelationships. We therefore 
took several steps to avoid falsely interpreting spurious correlations as 
causal. First, we only interpreted correlations where the 99% Bayesian 
credible interval did not overlap zero. Second, we identified indicators 
a-priori that shared similar underlying data sources, which we expected 
to be correlated (e.g., cumulative impacts for different habitat types). 
Third, we focus our interpretation of casual relationships on relation-
ships identified a-priori (O’Connor et al., 2015). Finally, we assumed 
that any strong correlations that could not be anticipated a-priori are 
suggestive of new hypotheses that could be tested, and we refrained 
from making causal interpretations of them. 

2.3.3. Classifying cells into typologies 
We used k-medoid cluster analysis to group cells according to their 

residual indicator values. To partition cells, k-medoid cluster analysis 
identifies data points with low dissimilarity to others (i.e., the medoids) 
and assigns nearby observations to form clusters around the medoid data 
points. The k-medoid method is less sensitive to outliers than the 
alternative k-means clustering method, which clusters observations 
around means rather than medoids (Kaufman and Rousseeuw 2009). K- 
medoid cluster analysis requires the number of clusters (k) to be speci-
fied a-priori. The statistically optimal number of clusters in the data can 
be identified using the average silhouette width. This is a measure of 
how similar an observation is to its designated cluster in comparison to 
others (Rousseeuw 1987), with high average silhouette width for a 
clustering configuration indicating tightly clustered observations 
(Rousseeuw 1987). 

While the number of clusters, and thus typologies, can be a subjective 
decision that depends on the purpose of the analysis and the end user 
needs, there are benefits of utilizing a fully data-driven approach to 
guide selection cluster numbers (e.g., choosing the k that produces the 
greatest silhouette width). We used a balance between fully data-driven 
and subjectively constrained. We constrained the clustering to be be-
tween 5 and 50, as fewer than 5 global typologies are uninformative for 
our purposes, and more than 50 are too complex. We subsequently 
identified separate peaks in silhouette width at 5 and 18 clusters (Ap-
pendix E) and explored these two outputs. We then performed k-medoid 
cluster analysis on a Euclidean distance matrix of residual indicator 
values at each cell using the partitioning around medoids clustering 
algorithm (Kaufman and Rousseeuw 2009). We produced a three- 
dimensional plot indicating the relative position of the clusters in 
ordination space and used an RGB color palette for the three axes to 
color the typologies. The three-dimensional ordinations enable the 
similarities among typologies to be mapped geographically. Cluster 
analysis was performed using the R package ‘cluster’ (Maechler et al., 
2019). 

We considered uncertainty in clustering by re-running the cluster 
analysis across the full posterior conditional distribution of residual 
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values and calculating a robustness statistic. The robustness statistic 
represents the consistency that pairs of cells were classified in the same 
or different typologies (Appendix F). 

2.3.4. Diagnosing typologies 
To diagnose typologies, we interrogate boxplots of residuals, which 

show the spread of indicator values within each typology. Residuals 
reflect indicator values relative to the mean value expected for a cell 
once covariate effects are removed. By setting a statistical quantitative 
metric to serve as a threshold, we can identify indicators most useful for 
diagnosing the distinguishing features of the typologies. We demon-
strate the use of quantile thresholds below by using 75th and 95th 
thresholds for the 5-typology and 18-typology outputs, respectively. 

Although all three habitats are not present in every cell, our 
modeling approach gap-fills for missing data across all indicators, so the 
indicators used to diagnose typologies can be associated with an 
ecosystem type that is outside its bioclimatic range at some cells. While 
this outcome can be counterintuitive, the method is deliberately 
designed to remove bioclimatic patterns through the covariates, 
enabling us to examine residual patterns in indicator values. Because the 

habitat types do frequently co-occur, we considered this slight inter-
pretation challenge to be better than modelling wetland types individ-
ually, which would reduce the model’s power to detect shared trends 
across habitat types. To avoid illogical diagnoses, we only interpret in-
dicators for wetlands that are present at a particular cell. 

3. Results 

3.1. Interrelationships among ecosystem indicators 

We identified interrelationships among the 34 indicators (Fig. 2). 
Given the size and complexity of the correlation matrix for 34 indicators, 
we focus here on several key interrelationships (for more comprehensive 
descriptions, see Appendix G). There were mostly negative, though 
weak, relationships between marine- and land-based cumulative im-
pacts and ecological structure and function indicators (Fig. 2). For 
example, seagrass-affiliated species were more likely to be threatened 
with extinction in cells with higher seagrass marine-based cumulative 
impacts; saltmarsh species were more likely to be threatened in cells 
with higher land-based saltmarsh cumulative impacts, and; mangrove 

Fig. 2. Residual correlations for interrelationships where the 99% Bayesian credible interval did not overlap zero. Red shades represent negative relationships and 
blue positive, with the color intensity and dot size indicating relationship strength. Mang: mangrove ecosystem, Seag: seagrass ecosystem, Salt: saltmarsh ecosystem, 
(c): current status, (r): instantaneous rate of change. For details of indicators, see Table 1; Appendix A. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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fish density, above ground biomass (AGB) and soil organic carbon (SOC) 
were lower in cells with higher mangrove marine-based cumulative 
impacts. 

Further, mangrove fish and invertebrate density were negatively 
related to the proportion of threatened species and positively related to 
the threatened species score in mangrove habitats (Fig. 2). Mangrove 
loss rate was negatively, though weakly, related to land- and marine- 
based mangrove cumulative impacts, and seagrass change rate was 
negatively related to the rate of instantaneous change in seagrass 
climate-based impacts (Fig. 2). Given that high values for extent change 
indicators are a positive (i.e., less loss), these relationships mean that 
areas with the highest rate of loss had higher cumulative impacts. Sea-
grass change rate was not related to any other cumulative impact indi-
cator (Fig. 2). 

The strongest relationships were those between indicators with 
shared data, such as those between the same cumulative impacts across 
different habitats (e.g., mangrove climate current impact and saltmarsh 
climate current impact; Fig. 2). These layers use the same underlying 
dataset, but with a different habitat-specific severity multiplier based on 
expert opinion (Halpern et al., 2007). The correlations among indicators 
reflect correlations in the data, not correlations in interpolated values. 
We also found an anticipated, strong positive relationship between the 
fish and invertebrate layers (Fig. 2), which were created with several of 
the same underlying datasets (e.g., mangrove area, salinity, primary 
productivity; https://maps.oceanwealth.org). Similarly, the strongest 
negative relationships were those between the two threatened species 
indicators (Fig. 2). For these, the proportion of threatened species (i.e., 
Vulnerable, Endangered, or Critically Endangered) is negatively corre-
lated with the weighted average of the species status. Apart from these 
relationships, interrelationships were generally weak or non-existent (i. 
e., had low correlation coefficients) for most globally comprehensive 

datasets. 

3.2. Typologies for the world’s coastal wetlands 

We next defined typologies that characterize clusters of cells with 
similar condition in their coastal wetland indicators. The typologies are 
driven by the two-way interrelationships (Fig. 2), but also capture 
higher order correlations among indicators that are not apparent from 
analysis of two-way correlations alone. A silhouette analysis identified 
two sets of typology clusters at different spatial scales: one with 5 and 
another with 18. We describe these outputs below and have developed 
an interactive application allowing users to select individual cells, 
evaluate cell-specific indicator values, alter quantile thresholds, and 
filter out cells that do not contain specific habitat types: http://github. 
com/globalwetlands/glowdex-app. 

For the 5-typology output (Fig. 3), Typology 1 (33.7% of cells; 959 
cells) exists throughout much of the world, has no indicators that are 
distinctive at the threshold, and can be interpreted as a ‘catchall’ for 
sites that vary without any strongly consistent patterns (Fig. 3). Typol-
ogy 2 (29.7%; 844) largely exists throughout Europe, central-west Af-
rica, Asia, and New Zealand (Fig. 3). Cells within Typology 2 are 
characterized as having high land- (e.g., organic chemical and nutrient 
pollution) and marine-based threats (e.g., fishing and shipping) in all 
three habitats, and a low species threat score for saltmarsh and seagrass, 
meaning there these habitats have a high number of threatened species 
(Fig. 3). Typology 3 (13.5%; 383) largely exists throughout southeast 
Asia, Madagascar, parts of central Europe and northeast USA (Fig. 3). 
This typology is typified by all three habitats experiencing high climate- 
based impacts (e.g., ocean acidification, sea level rise and warming; 
Fig. 3). Typology 4 (13.6%; 386) largely exists throughout west coast 
USA and Canada, and the Caribbean (Fig. 3). This typology is typified by 

Fig. 3. Coastal wetland typologies for 5-typology output with diagnostic attributes. ‘High’ and ‘low’ refer to absolute indicator values being above or below the 
global average, based on residuals and using 75th quantiles (for boxplots of all indicators, see Appendix J). Given this threshold, Typology 1 has no distinguishing 
indicators. ‘(c)’ is current status, and ‘(r)’ is instantaneous rate of change. Only indicators for habitats which occur for a given cell should be used to diagnose and 
describe that typology. 
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a low rate of increase in climate-based impacts across all habitats, low 
mangrove AGB, seagrass habitats with a low proportion of threatened 
species, but mangrove habitats with a high proportion of threatened 
species (Fig. 3). Typology 5 (9.6%; 273) covers Australia, Papua New 
Guinea, and Colombia (Fig. 3). Cells within Typology 5 are character-
ized by low marine-based impacts in all habitats, and low land-based 
impacts in mangroves. Further, cells with mangroves in typology 5 
have high AGB, fish and invertebrate density and a high species threat 
score (i.e., few threatened species; Fig. 3). For a country-level break-
down of cell numbers within each typology, see Appendix H. For global 
maps displaying individual typologies, see Appendix I. 

The classification of cells into typologies could be affected by un-
certainty in the strength of indicator interrelationships, so we calculated 
an indicator of the robustness of the typologies (Appendix F). Robustness 
was consistent with the diagnoses, in that the typologies with clearer 
diagnoses also had higher robustness than typologies that lacked dis-
tinguishing indicators. For example, Typology 1, the ‘catchall’ had low 
robustness, whereas typology 3 was clearly distinguished by climate 
threats and had high robustness. 

The second output is the 18-typology output (Fig. 4). To illustrate its 
application, we describe four regional case studies that span different 
typologies and geographical settings, and typologies with relatively high 
robustness (Appendix F). We follow a framework for diagnosing and 
describing case studies, which can be applied to all cells: (1) describing 
the key coastal wetland habitat types present, (2) identifying the ty-
pology, (3) using indicators to describe the typology characteristics for 
the habitat types present (given the chosen threshold), (4) validate and 
conceptualize these using evidence from the literature, and (5) identify 
other case study locations within the typology. It is important to note 
that the habitat extent estimates given below are based on the best 
available global data layers but are not always accurate at the local 
scale, particularly for seagrass and saltmarsh. 

3.2.1. West coast Canada 
The coastal wetlands of Canada are saltmarsh (111,228 ha) and 

seagrass (30,154 ha) habitats (extent estimates based on whole of 
Canada), and the west coast is primarily in Typology 11 (Fig. 5). Ty-
pology 11 is characterized by a low rate of increase in climate-based 
impacts across all habitat types, and a low proportion of saltmarsh- 
affiliated species threatened by extinction. These cells represent rela-
tive saltmarsh refuges where, like PNG, should be protected whilst 
considering needs for local resources. Other cells within Typology 11 

occur along the coast of western USA, especially Alaska, and Saudi 
Arabia and Iran (Fig. 4). 

3.2.2. Papua New Guinea 
The coastal wetlands of Papua New Guinea (PNG) are largely man-

groves (486,137 ha) and seagrass (934,739 ha), and are primarily within 
Typology 8 (Fig. 5). Typology 8 is characterized by low marine-based 
cumulative impacts to mangroves and seagrass, and low land-based 
impacts to mangroves. Further, mangroves face a low rate of increase 
in marine-based impacts, have a low proportion of threatened species, 
and a high density of fish and invertebrates (Fig. 5). Cells within this 
typology appear to be important coastal wetland refuges from human 
impacts, suggesting management could focus on protection, whilst 
considering the needs of the local human population that rely on man-
groves for their livelihoods. Parts of PNG, such as the Gulf of Papua in 
the south, are also classified as wilderness areas with low human impact 
(Jones et al., 2018). Other cells within Typology 8 occur along the coast 
of Solomon Islands, Tonga, and some scattered areas in southwest 
Australia (Fig. 4). 

3.2.3. East Africa 
The coastal wetlands of East Africa, from Kenya to central 

Mozambique and including northwest Madagascar, are largely man-
groves (729,011 ha) and seagrass (664,763 ha), and are primarily within 
Typology 4 (Fig. 5). Typology 4 is characterized by a high rate of in-
crease in climate-based impacts across all habitat types. Identifying 
areas where climate-based impacts, such as increasing sea-level rise, 
ocean acidification and water temperature, are rapidly accelerating is 
critical for informing climate specific, adaptable management responses 
(e.g., ecosystem-based adaptation; Giffin et al., in press). Our findings 
confirm work identifying East African mangroves – which are largely 
fringing mangroves – as being particularly vulnerable to sea-level rise 
(Sasmito et al., 2016). Other cells within Typology 4 occur along the 
coast of western India, Pakistan, and Sri Lanka (Fig. 4). 

3.2.4. United Kingdom 
The coastal wetlands of the United Kingdom are saltmarsh (56,113 

ha) and seagrass (13,157 ha), and are primarily in Typology 12 (Fig. 5). 
Typology 12 is characterized by high marine-based impacts to seagrass, 
and a low rate of increase in climate-based impacts across all habitat 
types. Given historical losses in seagrass (Green et al., 2021), manage-
ment and conservation should prioritize efforts towards reducing marine 

Fig. 4. Coastal wetland typologies for the 18-typology output. Typology colors were based on a three-dimensional ordination of intergroup similarity, so similar 
colors reflect similar typologies. For boxplots of indicators values that diagnose and define the typologies, see Appendix J. For regional case study examples, 
see Fig. 5. 
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(e.g., fishing and shipping) pressures in the immediate term, as these are 
related to losses in seagrass extent. Other cells within Typology 12 occur 
along the coast of France, Ireland, Norway, and China (Fig. 4). 

4. Discussion 

We described interrelationships among coastal wetland indicators 

and used these to develop spatially explicit typologies of ecosystem 
status. These typologies represent the diverse conservation needs of 
coastal ecosystems, from managing the increasing threat of climate 
change (e.g., in east Africa), to protecting globally significant ecosystem 
refuges (e.g., mangrove forests in Papua New Guinea), to managing 
intensive conflicting uses of the coastal zone (e.g., in Bangladesh). 

A key strength of our methodology is that it can identify the unique 

Fig. 5. Case studies for the 18-typology output. Violin plots show the residual indicator values for indicators that are most useful for diagnosing key differences 
among typologies, defined as those that sit outside a threshold (here, 95th quantiles). Only indicators for habitats which occur for a given cell are shown. The 
indicator value for the highlighted cell (darkened cell) in each map is shown as a pink diamond in the violin plot. Imagery is taken from the online application: http: 
//github.com/globalwetlands/glowdex-app. For plots of all indicators, see Appendix J. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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challenges facing different regions and suggest regions that could share 
similar conservation and management approaches. For instance, our 
typologies highlighted areas where marine- and land-based impacts are 
joint issues (e.g. China, France, Bangladesh, and central-west USA), 
which need joint actions that extend beyond place-based management, 
such as integrated coastal zone management (Carter et al., 2015). 
Conservation and management actions to conserve and preserve coastal 
ecosystems need to mitigate multiple pressures simultaneously (Bates 
et al., 2019; Tulloch et al., 2020), and our typology framework can 
inform which combinations of regional pressures can be addressed to 
optimally reduce cumulative impacts. By identifying how cells vary in 
pressures and historical rates of loss, the typologies can inform how 
management is prioritized among restoration and protection actions on 
the land and in the sea (Saunders et al., 2017). For example, restoration 
of catchments will be more beneficial in regions that have historically 
had high rates of land-use conversion (e.g., Europe), whereas protection 
of wetlands from deforestation will be more beneficial in regions that 
have low historical rates of loss (e.g., West Papua) (Saunders et al., 
2017). 

Our results are bolstered by two components of our approach. First, 
we account for variability amongst cells hypothesized to be due to 
environmental variation or the size of habitats prior to quantifying in-
terrelationships and developing typologies. Second, our data-driven 
approach identifies similarities between geographically disjunct areas, 
highlighting a key difference between our approach and integrated 
survey approaches that often delineate large regions with few if any 
outliers(e.g., bioregionalizations based on expert opinion; Mackey et al., 
2008). By first accounting for contextual effects using covariates and 
gap-filling missing data based on interrelationships, our approach differs 
from existing ones (see Appendix K for comparison with other ecosystem 
assessment methods). Our approach provides complementary informa-
tion that can be used in conjunction with existing, score-based ap-
proaches such as the Ocean Health Index or the Nested Environmental 
Assessment Tool (NEAT) (Borja et al., 2016), or univariate ecosystem 
level indicators (Rowland et al., 2020). Combined, spatial typologies of 
condition based on indicator interrelationships and score-based indices 
can provide powerful insights to inform global conservation and man-
agement initiatives. 

Although we identified a series of significant indicator in-
terrelationships, several expected relationships were weak, particularly 
between indicators across dimensions (‘interdimensional relation-
ships’). For example, the rate of seagrass loss was not related to most 
seagrass cumulative impacts, while relationships between rate of change 
in cumulative impacts and habitat extent change and ecological struc-
ture and function indicators were very weak. Further, climate-based 
impacts were generally less strongly related to high rates of habitat 
loss or low ecological structure and function, compared to land- and 
marine-based pressures. Weak correlations could exist because temporal 
or spatial mismatches exist in the global datasets, global pressure layers 
miss important threatening processes and causal relationships, or if 
directional effects are context dependent. 

A lack of interdimensional relationships suggests that caution is 
needed when interpreting global cumulative impact maps designed to 
represent large-scale patterns in ecological processes and ecosystem 
status (Tulloch et al., 2020). Such cumulative impact maps are often 
created with a combination of data and models to map pressures, and 
expert opinion scores are elicited to determine how those pressures are 
weighted for specific ecosystems (Halpern et al., 2007). Given our 
findings, we suggest that cumulative impact maps should not be used on 
their own as large-scale indicators for evaluating the outcomes of con-
servation policy for coastal wetlands, such as for setting management 
targets as thresholds. 

Global scale analysis of cumulative impacts and ecosystem trends has 
become a prevalent way to inform on large-scale conservation analyses, 
which typically simplify global data into two or three categories that 
relate to specific conservation policy needs. Some examples include 

identifying marine wilderness areas (Jones et al., 2018) and marine 
conservation priority areas (Selig et al., 2014), implementation of MPAs 
and fisheries restrictions (Cinner et al., 2020), and expansion versus 
management of protected areas (Adams et al., 2019). While there are 
tradeoffs between producing interpretable science to guide broad in-
vestment and diving into the fine details, we found that at least 18 
distinct groups (typologies) is the most statistically robust number to 
globally categorize coastal wetlands, based on our set of indicators. 
Existing global scale analyses might thus be oversimplified. While we 
acknowledge the communication benefits of this simplification, our re-
sults highlight the need for diverse management and policy solutions for 
coastal ecosystems that include integrated management and conserva-
tion efforts (Griffiths et al., 2020; Tulloch et al., 2020). 

Identifying opportunities for developing policy responses and glob-
ally coordinated conservation actions in different locations in which 
similar governing mechanisms operate is particularly useful for devel-
oping countries, where resources are thin, and data is generally scarcer. 
Within the East African cluster, for example, organizations such as the 
Western Indian Ocean Marine Science Association (WIOMSA) are well 
suited to drive opportunities that can achieve multiple objectives 
simultaneously. In these regions, and indeed globally, governance plays 
a key role in effectively carrying out conservation action and protecting 
coastal ecosystems (Cinner et al., 2016; Griffiths et al., 2020). The effects 
of cumulative impacts on rates of mangrove loss, for example, depends 
on national context and indicators of governance (i.e., National Regu-
latory Quality from the World Governance Indicators; Turschwell et al., 
2020). International initiatives that drive global funding priorities are 
thus challenged by the need to set broad scale goals while acknowl-
edging that local conservation actions must be tailored to suit local 
contexts (Waldron et al., 2013). Therefore, future work to identify and 
overlay opportunities for conservation and management with our 
diagnostic typologies of ecosystem condition would help to set the scene 
for globally coordinated conservation actions that are effective and 
feasible. 

4.1. Caveats, questions, considerations, and future directions 

A future research priority is to expand the set of indicators for sea-
grass and saltmarsh (Brown et al., 2021). Among the 34 indicators 
within our analysis there were fewer for saltmarsh and seagrass than 
mangroves, and indicators of ecological structure and function were 
limited primarily to mangroves. While mangroves are better studied at 
the global scale (Worthington et al., 2020), the likelihood of global in-
dicator development for seagrass and saltmarsh ecosystems is increasing 
as global meta-analyses and experiments are conducted (e.g., quanti-
fying consumption rates in seagrass ecosystems worldwide; Whalen 
et al., 2020). Gaps in our current suite of indicators do not invalidate our 
results, but mean that the typologies may not represent interrelation-
ships among unmeasured indicators, particularly for seagrass and salt-
marsh, that would be helpful for informing conservation actions. 
However, all existing global analyses of seagrass and saltmarsh trends 
are subject to the same caveat (Duffy et al., 2019; Dunic et al., 2021). As 
more global-scale datasets become available, and the accuracy of others 
improves, these can be included in future iterations of our methodology. 

An interesting question is the extent to which our approach can be 
applied at different spatial scales, either utilizing a different grid cell size 
or higher resolution analyses for specific regions of the world. All op-
tions are theoretically possible, but high resolution data are seldom 
available at the global scale, which has limited past efforts to create 
accurate high resolution global analyses of ecosystem impacts (Halpern 
and Fujita 2013). Regardless, our typologies are likely to be robust to 
scaling issues; a sensitivity analysis of cumulative impact maps found 
that changing the resolution of the data was the least influential source 
of uncertainty (Stock and Micheli 2016). Future studies should, how-
ever, still consider how differences in the scale of indicator measure-
ments affects the classification of locations into typologies. 
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We present a new method for investigating interrelationships among 
global indicators of coastal wetlands and for developing spatially 
explicit typologies of ecosystem condition. Future iterations could 
improve outputs by: (1) tracking change through time and maintaining 
ongoing calculations of typologies using dynamic LVMs (Thorson et al., 
2016); (2) considering future scenarios such as using predictive 
modelling of climate change and how that might influence the typol-
ogies (especially sea level rise, shoreline recession, coastal erosion and 
accretion, and coastal flooding), and; (3) creating interpretable action 
maps that incorporate conservation-relevant variables (e.g., feasibility) 
and turn the complex outputs from our analyses into management-ready 
information (e.g., guidelines), and thus more tangible, real-world 
benefits. 

5. Data and materials availability 

All data needed to evaluate the conclusions in the paper are present 
in the paper and the Supplementary Materials. Additional data related to 
this paper may be requested from the authors. 
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Selig, E.R., Turner, W.R., Troëng, S., Wallace, B.P., Halpern, B.S., Kaschner, K., 
Lascelles, B.G., Carpenter, K.E., Mittermeier, R.A., 2014. Global priorities for marine 
biodiversity conservation. PLoS ONE 9, e82898. 

Sievers, M., Brown, C.J., Tulloch, V.J.D., Pearson, R.M., Haig, J.A., Turschwell, M.P., 
Connolly, R.M., 2019. The role of vegetated coastal wetlands for marine megafauna 
conservation. Trends Ecol. Evol. 34, 807–817. 

Stock, A., Micheli, F., 2016. Effects of model assumptions and data quality on spatial 
cumulative human impact assessments. Glob. Ecol. Biogeogr. 25, 1321–1332. 

Thorson, J.T., Ianelli, J.N., Larsen, E.A., Ries, L., Scheuerell, M.D., Szuwalski, C., 
Zipkin, E.F., 2016. Joint dynamic species distribution models: a tool for community 
ordination and spatio-temporal monitoring. Glob. Ecol. Biogeogr. 25, 1144–1158. 

Tulloch, V.J., Turschwell, M.P., Giffin, A.L., Halpern, B.S., Connolly, R., Griffiths, L., 
Frazer, M., Brown, C.J., 2020. Linking threat maps with management to guide 
conservation investment. Biol. Conserv. 245, 108527. 

Turschwell, M.P., Tulloch, V.J., Sievers, M., Pearson, R.M., Andradi-Brown, D.A., 
Ahmadia, G.N., Connolly, R.M., Bryan-Brown, D., Lopez-Marcano, S., Adame, M.F., 
2020. Multi-scale estimation of the effects of pressures and drivers on mangrove 
forest loss globally. Biol. Conserv. 247, 108637. 

UN., 2020. The Sustainable Development Goals Report 2020. United Nations. 
UNEP-WCMC, S., F. T. 2017. Global distribution of seagrasses (version 6.0). Sixth update 

to the data layer used in Green and Short (2003). 
Unsworth, R.K., McKenzie, L.J., Collier, C.J., Cullen-Unsworth, L.C., Duarte, C.M., 
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